

640SERBSF3025

DocumentID NCD980728687

Site Name RENROH

DocumentType Preliminary Assessment/Site Inspection (PA/SI)

RptSegment 1

DocDate 10/18/1989

DocRcvd 10/18/1989

Box SF3025

AccessLevel Public

Division Waste Management

Section Superfund

Program SERB (SERB)

DocCat Facility

State of North Carolina
Department of Environment, Health, and Natural Resources
Division of Solid Waste Management
P.O. Box 27687 · Raleigh, North Carolina 27611-7687

James G. Martin, Governor
William W. Cobey, Jr., Secretary

18 October 1989

William L. Meyer
Director

Mr. Robert Morris
EPA NC CERCLA Project Officer
EPA Region IV Waste Division
345 Courtland Street, NE
Atlanta, GA 30365

Dear Mr. Morris:

SUBJECT: Site Investigation Report
Renroh, NCD980728687
Highway 50 and Lloyd Street
Holly Ridge, Onslow County, NC 28445

Enclosed please find the Site Investigation Report for the subject site. Due to the removal activity which has occurred at this site and the apparent lack of residual contaminant, no further action is recommended at this site at this time. If you have any questions, please contact me at (919) 733-2801.

Sincerely,

A handwritten signature in cursive script that reads "Jack Butler".

Jack Butler, Environmental Engineer
Superfund Section
Solid Waste Management Division

JB/ds/renroh-8

Enclosure

NORTH CAROLINA

DEHNR/DSWM

**Renroh
NCD980728687
Screening Site Investigation
October 1989**

**By: Jack Butler
Environmental Engineer
Superfund Section
Division of Solid Waste Management**

Site Investigation Report

October 1989

Renroh
NCD980728687
Highway 50 and Lloyd Street
Holly Ridge, Onslow County, NC 28445

Prepared by:

Jack Butler
Jack Butler
Environmental Engineer

Table of Contents

Executive Summary

1.0 Background

- 1.1 Location
- 1.2 Site Layout
- 1.3 Ownership History
- 1.4 Permit and Regulatory History
- 1.5 Remedial Actions to Date
- 1.6 Summary Trip Report

2.0 Environmental Setting

- 2.1 Topography
- 2.2 Surface Water
- 2.3 Geology, Soils, and Groundwater
- 2.4 Climate and Meteorology
- 2.5 Land Use
- 2.6 Population Distribution and Water Supply
- 2.7 Critical Environments

3.0 Waste Types and Quantities

4.0 Laboratory Data

5.0 Toxicological/Chemical Characteristics

Appendix A: Maps and Photographs

Appendix B: Laboratory Data

Appendix C: References

Appendix D: Site Inspection Form

Appendix E: Site Safety Plan

EXECUTIVE SUMMARY

The Renroh site is located at the corner of Highway 50 and Lloyd Street in Holly Ridge, NC. This is in Onslow County. The county code is 67 and this is in the third Congressional District.

In 1977 approximately 2,000 drums of 2,4-dinitrophenol were discovered in a dilapidated US Army gym in Holly Ridge, NC. This building was originally built in the early 1940's as part of Camp David. At the time of the discovery the building was owned by Doug Horner, Renroh, and was being used as a warehouse.

When discovered, the roof of the building had caved in and a number of the drums had broken open. In 1980 the drums were removed under a court order. Most of the drums were moved to Lackey Ind. Whse. (NCD080891039) in Whiteville, NC. Several hundred were reportedly sent to a Renroh warehouse in New Bern, American Cyanamide in Damascus, VA, and some were reportedly shipped to an unknown company in Taiwan. Approximately 100 drums from the Renroh site were discovered in a warehouse owned by Marlow Bostic, NCD982119554, on US 17 about 1 mile north of Holly Ridge.

After the drums were removed from the Renroh site, the property was owned for approximately one year by the City of Holly Ridge who sold it to Allen Hobbs in 1982. The dilapidated building has been removed and the site is presently a vacant lot. The concrete slab floor and fence that was erected around the building after the drum discovery remain on the site.

1.0 BACKGROUND

1.1 Site Location

The Renroh site is located at the corner of Highway 50 and Lloyd Street in Holly Ridge, NC (1). This is in Onslow County. The county code is 67 and this is in the third Congressional District. The coordinates of the site are: Latitude: $34^{\circ} 29' 51''$; Longitude: $77^{\circ} 33' 22''$ (Map 1, Appendix A).

1.2 Site Layout

The Renroh site covers an area of approximately 2.5 acres (Figure 1, Appendix A). The site is presently a vacant lot. An approximately 140 ft. x 180 ft. concrete pad surrounded by 16 concrete columns is all that remains of the previous warehouse. A chain link fence surrounds this area. A second approximately 120 ft. square concrete area is located approximately 40 ft. east of the previous location of the warehouse. This area was reportedly used as a parking lot. The site is essentially flat (Figure 1, Appendix A).

1.3 Ownership and Site Use History

The former warehouse on this site was originally built in the early 1940's as part of Camp David. When the collapsing building was discovered in 1977 the site was owned by Doug Horner, Renroh, and was being used as a warehouse. In 1980 the drums were removed under a court order. After the drums were removed the property was owned for approximately one year by the City of Holly Ridge who sold it to Allen Hobbs in 1982. The dilapidated building has been removed and the site is presently a vacant lot (1).

1.4 Permit and Regulatory History

No environmental permits have been issued for this site.

1.5 Remedial Action to Date

In 1980 approximately 2,000 drums of 2,4-dinitrophenol were removed from the site under a court order (2,3). Most of the drums were moved to Lackey Ind. Warehouse (NCD080891039) in Whiteville, NC. Several hundred were reportedly sent to a Renroh warehouse in New Bern, American Cyanamide in Damascus, VA, and some were reportedly shipped to an unknown company in Taiwan. Approximately 100 drums from the Renroh site were discovered in a warehouse owned by Marlow Bostic, NCD982119554, on US 17 about 1 mile north of Holly Ridge (1). The warehouse was demolished and a chain link fence was erected around the site of the former warehouse (1).

1.6 Summary Trip Report

On August 8, 1989, Jack Butler and Ed Wallingford, NC Superfund Section performed a site investigation visit to the subject site. Mr. Les Haste and Mr. Sam Frazelle, Onslow County Health Department were also present during a portion of this visit. Surface soil samples were collected on the site (see Figure 1, Appendix A). No residential wells were observed in the immediate vicinity of the site (1).

2.0 ENVIRONMENTAL SETTING

2.1 Topography

The Renroh site is in the coastal plain of North Carolina and is located approximately 4 miles inland from the Atlantic Ocean. The site is essentially flat and approximately 65 feet above sea level (Map 1, Appendix A). Since the site slope is approximately 0%, there is no clear cut drainage pattern for the site. It is assumed that any runoff from the site collects in drainage ditches along U.S. 50 and Lloyd Street, but the flow direction in these ditches is not obvious.

2.2 Surface Water

As stated above, the drainage pattern at the Renroh site is not clear due to the flatness of the site. The general area of Holly Ridge slopes to the Southeast toward the Intercoastal Waterway and the Atlantic Ocean. The closest surface water is Cypress Branch approximately 0.5 miles southeast of the site. Cypress Branch joins with County Line Branch to form Batts Mill Creek approximately 2 miles south of the Renroh site. Batts Mill Creek enter the Intercoastal Waterway approximately 3 miles south of the site (Map 1, Appendix A). Batts Mills Creek, County Line Branch, and Cypress Branch are class SA waters in this area (4).

2.3 Geology, Soils, and Groundwater

The oldest formation penetrated by a water well in Onslow County is the Peedee. It is not known to crop out but lies within 30 feet of the surface in some valleys northwest of Richlands. Coastward the Peedee is more deeply buried, lying under a wedge of Castle Hayne limestone that thickens toward the cost. The Castle Hayne is exposed at many places along New River between Richlands and Jacksonville. Southwest Creek and White Oak River are other streams whose channels lie in the limestone in the northern part of the county. The Yorktown formation overlies the Castle Hayne, but it has been eroded away in parts of the county north of Jacksonville. Along the coast the Yorktown reaches a thickness of about 60 feet but inland it is thinner. The Yorktown is exposed in several ravines near Silverdale and occurs within 60 feet of the surface in several wells at Camp Lejeune. A thin layer of sand and clay, chiefly sand, of Pleistocene age conceals the older formations in the interstream areas (5).

Three main aquifers furnish water to wells in Onslow County. These are the surficial sands, the sands of the Peedee, and the Tertiary limestone unit (5).

The surficial sand covers the entire county to a depth generally ranging from 10 to 30 feet. As the water table almost everywhere is within 15 feet of the surface, well points

penetrate enough saturated sand of the surficial deposits to yield sufficient water for domestic purposes (5).

Sands of the Peedee formation furnish water to drilled wells in the northwest part of Onslow County. South and east of Richlands little water is pumped from the Peedee because the overlying Tertiary limestone aquifer furnishes adequate water. Except in the northwestern third of the county, salty water probably occurs in the lower part of the Peedee formation, and the entire formation may contain salty water in the vicinity of New River to the south of Jacksonville (5).

The Tertiary limestone unit, represented largely by the Castle Hayne limestone, is the aquifer which drilled wells tap south of US Highway 17. The limestone thins toward the north, but it is an important aquifer as far north as Richlands. The New River is entrenched in the limestone between Richlands and Jacksonville, resulting in a large aggregate discharge of groundwater from the limestone into the river. Some of the discharge is in the form of springs in the vicinity of Catherine Lake (5).

The permeability of the limestone differs greatly from place to place. The majority of the wells in the Holly Ridge are reportedly between 100 to 180 feet deep and draw water from the limestone. The specific capacity of wells range from about 18 to 125 gpm per foot of drawdown (5).

At Camp Lejuene the permeability of limestone is considerably less than at Holly Ridge. Individual gravel-walled wells drawing water from sand and semiconsolidated limestone yield as much as 250 gpm. In most of the wells the specific capacity is 5 to 10 gpm per foot of drawdown (5).

As in adjacent counties, the surficial sand yields water that is soft and is low in dissolved mineral matter. The water generally contains enough dissolved carbon dioxide to render it corrosive. The water in sand of the Peedee is a soft, sodium bicarbonate water that is satisfactory for almost all uses. A hard, calcium bicarbonate water characterizes the Tertiary limestone aquifer. In places the water in the limestone contains objectionable amounts of iron (5).

2.4 Climate and Meteorology (6,7)

Seasonal Temperatures:	<u>°F</u>	<u>January</u>	<u>July</u>
Mean Max.		>58	86
Mean Min.		36-40	68-72
Mean		46-48	>80
Precipitation:	(inches)		
Mean annual precipitation:			64-72
Mean annual evaporation:			>42
Net annual precipitation:			22-30
Mean annual snowfall:			<2
One year 24-hr. rainfall:			3.5-4.0
Mean days/year with thunderstorms:			40-60
Prevailing winds and wind speeds:			S at 12 MPH

Emissions Inventory Summary for Onslow County (Tons/year) (8)

<u>Type</u>	<u>Area Sources</u>	<u>Point Sources</u>
Particulates	6007	39
Sulfur Dioxide	485	48
Nitrogen Oxides	4326	10
Volatile Organics and	7447	---
Hydrocarbons		
Carbon Monoxide	35,360	---

2.5 Land Use

The Renroh site is presently a vacant lot surrounded on three sides by residential use. A concrete plant operates across Highway 50 on the west side of the site (1).

2.6 Population Distribution and Water Supply

All of the town of Holly Ridge (population 465; 1980 census) is within one mile of the site (Map 1, Appendix A). The town of Holly Ridge receives water service from Onslow County Water Service which utilizes wells near Richlands approximately 30 miles north of Holly Ridge and a well on NC 210 about 8 miles northeast of Holly Ridge. All areas within the town limits of Holly Ridge are served by this water system. In addition water lines run about 1/2 mile down Highway 17 toward Wilmington and about one 1 mile on Highway 50 east toward the beach. A house count on USGS Topographic Map of the area not served by the town of Holly Ridge indicates 13, 52, 173, and 291 houses within 1, 2, 3, and 4 miles respectively of the Renroh site utilize private wells. Applying a factor of 3.8 residents per house this yields 49, 198, 657, and 1106 residents within 1, 2, 3, and 4 miles of the site, that rely on groundwater (9,10). Mr. Les Haste, Onslow County Health Department reported during the Site Investigation visit that the nearest wells to the site were probably at the Carolina Meat Processors facility approximately 1300 feet

southwest of the site. Mr. Haste reported that Carolina Meat Processors had three wells which are used to obtain water to clean equipment.

2.7 Critical Environments

The closest critical habitat is Lake Waccamaw approximately 60 miles southwest of Holly Ridge. Lake Waccamaw is the home of the Waccamaw Silverside (*Menidia extensa*), a threatened species (11). There are also several wetland areas within about one mile of the Renroh site. The Holly Shelter State Wildlife Management Area, which consists primarily of wetlands, is about 2.5 miles southwest of the site (Map 1, Appendix A).

3.0 WASTE TYPES AND QUANTITIES

No hazardous wastes or substances were identified remaining on the site at the time of the Site Investigation visit. During the court ordered removal in 1980, approximately 2,000 drums of 2,4-dinitrophenol were removed (1,2,3,9).

4.0 LABORATORY DATA

The laboratory data is presented in Appendix B of this report. No hazardous wastes or substances were identified in surface soil collected from around the foundation of the former warehouse at the site that were significantly above background. No groundwater samples were collected as there are no monitoring wells on the site and no drinking water wells in the immediate vicinity of the site.

5.0 TOXICOLOGICAL CHEMICAL CHARACTERISTICS

The toxicological and chemical characteristics of 2,4-dinitrophenol are presented on the following page (12.)

2,4-DINITROPHENOL

CAS RN: 51285

NIOSH #: SL 2800000

mf: C₆H₄N₂O₅; mw: 184.12

Yellow crystals. mp: 112°, d: 1.683 @ 24°, vap. d: 6.35.

SYNS:

2,4-DINITROFENOL (DUTCH)
DINITROFENOLO (ITALIAN)
ALPHA-DINITROPHENOL

1-HYDROXY-2,4-DINITROBEN-
ZENE
NSC 1532

TOXICITY DATA: 3

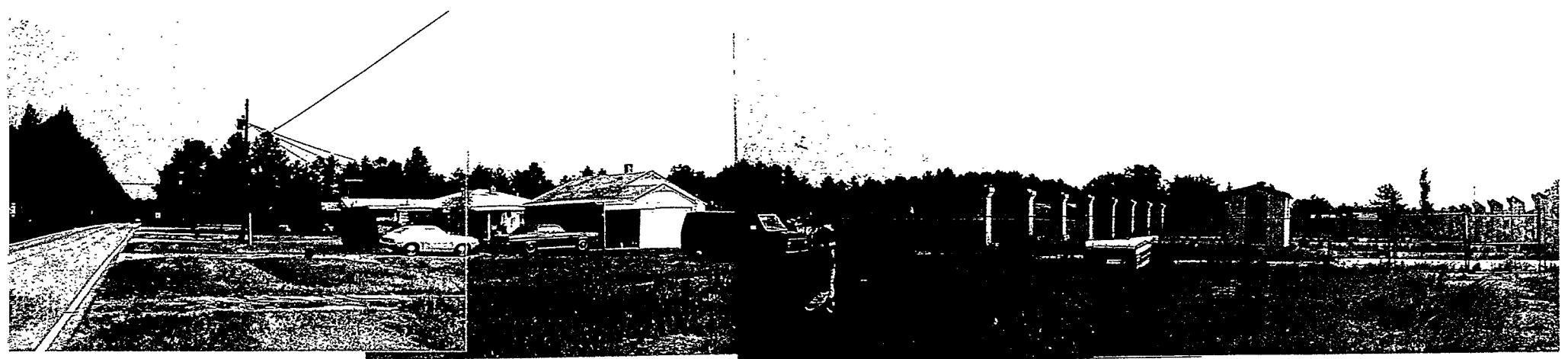
cyt-mus-ipr 10 gm/kg
orl-rat TDLo: 2040 mg/kg (8D pre-
21D post)
ipr-mus TDLo: 40800 ug/kg (10-12D
preg).
skn-rbt 300 mg/4W-I MLD
mmo-esc 200 ppm/3H
orl-hmn LDLo: 4300 ug/kg
orl-rat LD50: 30 mg/kg
ipr-rat LD50: 20 mg/kg
scu-rat LD50: 25 mg/kg
unk-rat LD50: 27 ug/kg
orl-mus LD50: 45 mg/kg
ipr-mus LD50: 26 mg/kg
orl-dog LDLo: 30 mg/kg
scu-dog LDLo: 20 mg/kg
ivn-dog LDLo: 15 mg/kg
orl-rbt LD50: 30 mg/kg
scu-rbt LDLo: 20 mg/kg
orl-gpg LD50: 81 mg/kg
skn-gpg LDLo: 700 mg/kg
scu-gpg LDLo: 25 mg/kg
ims-gpg LDLo: 7500 ug/kg
unk-mam LD50: 40 gm/kg
orl-bwd LD50: 13 mg/kg

CODEN:

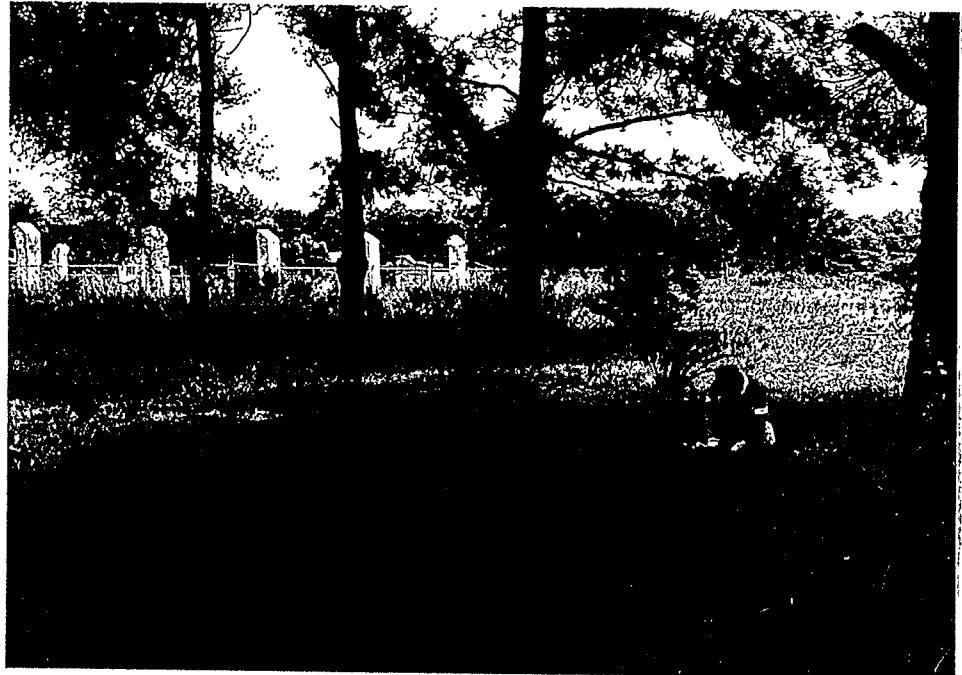
IJMRAQ 59,1442,71
PSEBAA 32,678,35
FCTXAY 11,31,73
JIHTAB 30,10,48
AMNTA4 85,119,51
JAMAAP 101,1333,33
TXAPAA 21,315,72
JPPMAB 17,814,65
JPETAB 49,187,33
FMCHA2 -D107,80
FATOAO 28,493,65
BCPCA6 18,1389,69
JPETAB 49,187,33
JPETAB 49,187,33
JPETAB 49,187,33
FATOAO 28,493,65
JPETAB 49,187,33
JIHTAB 30,10,48
AEPPAE 192,331,39
JPETAB 49,187,33
30ZDA9 -97,71
TXAPAA 21,315,72

Aquatic Toxicity Rating: TLm96: 10-1 ppm WQCHM*

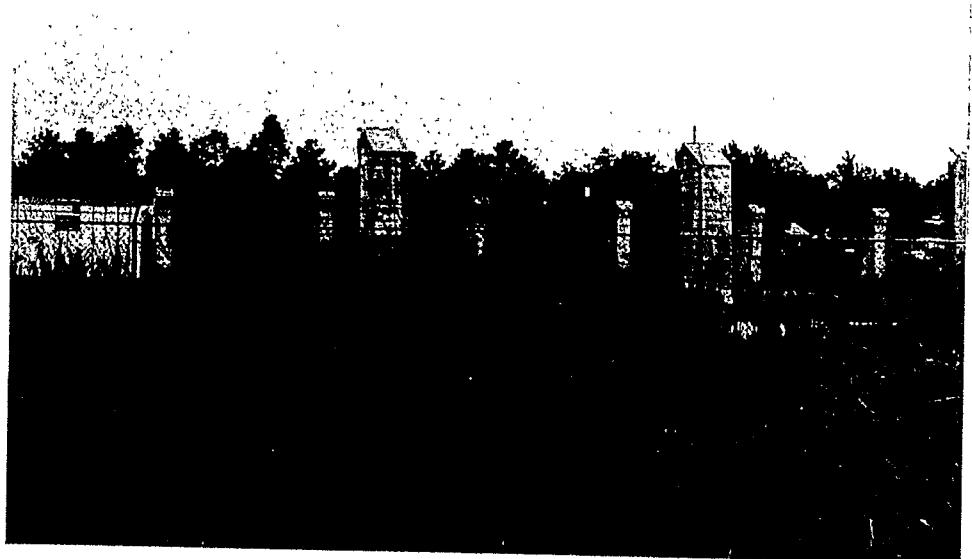
4,-74. Toxicology Review: 31ZNAA 1(1),93,71. Re-
ported in EPA TSCA Inventory, 1980. EPA TSCA
8(a) Preliminary Assessment Information Proposed
Rule FERREAC 45,13646,80.


THR: MUT data. A skn irr. HIGH orl, ipr, scu, unk,
ims. Phytotoxic. See also nitrates.

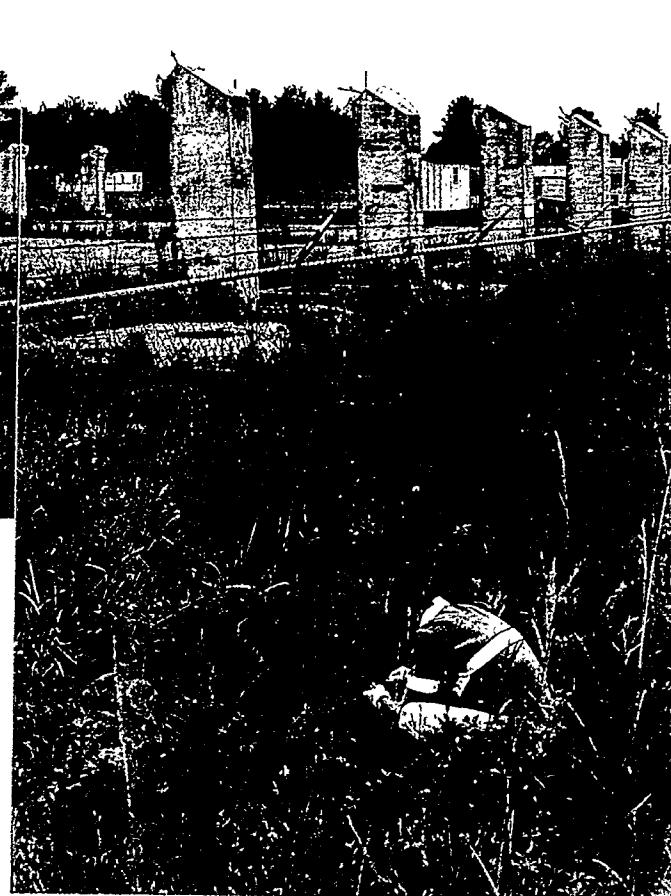
Disaster Hazard: When heated to decomp it emits tox
fumes of NO_x.


For further information see Vol. 2, No. 2 of DPIM Report.

Appendix A


Maps and Photographs

Renroh Site


Sample location 1

Sample location 2

Sample location 4

Appendix B

Laboratory Data

DEPARTMENT OF DEFENSE
SOLID AND HAZARDOUS WASTE MANAGEMENT BRANCH

Chain of Custody Record

Bazardous Waste Materials

RECEIVED

OCT 11 1989

SUPERFUND SECTION

Location of Sampling: Generator Transporter Treatment Facility
 Storage Facility Disposal Facility Landfill
 Other: Superfund

Company's Name Ravenol Telephone () None

Address Holy Ridge, N.C.

Collector's Name Jack Butler Telephone (919) 733-2801
signature

Date Sampled Aug. 8, 1989 Time Sampled 11:30 - 12:00

Type of Process Generating Waste Warehouse - 2,4-Dinitrophenol

Field Information

Field Sample No. 15566 15567 15568 15569

Chain of Possession:

1. Jack Butler Env. Eng. Aug. 8-9, 1989
signature title inclusive dates

2. Joyce Warner Chem. Analyst I 9 Aug. 89
signature title inclusive dates

3. _____ signature title inclusive dates

Results reported

Joyce Warner Chem. Analyst I 9 Oct 89
signature title date

Instructions: Complete all applicable information including signatures, and submit with analysis request forms.

SAMPLE ANALYSES REQUEST

Site Number 670980728687 Field Sample Number 15566
Name of Site Renroh Site Location Holy Ridge
Collected By Jack Butler ID# 44 Date Collected 8-8-89 Time 11:35

Type of Sample:

Environmental	Concentrate	Comments
<input type="checkbox"/> Groundwater (1)	<input type="checkbox"/> Solid (5)	<u>1-Bhg. soil</u>
<input type="checkbox"/> Surface Water (2)	<input type="checkbox"/> Liquid (6)	
<input checked="" type="checkbox"/> Soil (3)	<input type="checkbox"/> Sludge (7)	
<input type="checkbox"/> Other (4)	<input type="checkbox"/> Other (8)	

RECEIVED

OCT 11 1989

SUPERFUND SECTION

INORGANIC CHEMISTRY

Extractables		Total			
Parameter	Results mg/1	Parameter	Results mg/1	Parameter	Results mg/1
<input checked="" type="checkbox"/> Arsenic	<u>20.01</u>	<input checked="" type="checkbox"/> Arsenic	<u><19</u>	<input checked="" type="checkbox"/> Silver	<u><38</u>
<input checked="" type="checkbox"/> Barium	<u>20.04</u>	<input checked="" type="checkbox"/> Barium	<u>8</u>	<input type="checkbox"/> Sulfates	
<input checked="" type="checkbox"/> Cadmium	<u>20.08</u>	<input checked="" type="checkbox"/> Cadmium	<u><15</u>	<input type="checkbox"/> Zinc	
<input checked="" type="checkbox"/> Chromium	<u>20.20</u>	<input checked="" type="checkbox"/> Chloride		<input type="checkbox"/> Ph	
<input checked="" type="checkbox"/> Lead	<u>21.00</u>	<input checked="" type="checkbox"/> Chromium	<u><38</u>	<input type="checkbox"/> Conductivity	
<input checked="" type="checkbox"/> Mercury	<u>20.02</u>	<input type="checkbox"/> Copper		<input type="checkbox"/> TDS	
<input checked="" type="checkbox"/> Selenium	<u>20.005</u>	<input type="checkbox"/> Fluoride		<input type="checkbox"/> TOC	
<input checked="" type="checkbox"/> Silver	<u>20.20</u>	<input checked="" type="checkbox"/> Iron	<u>33</u>		
		<input checked="" type="checkbox"/> Lead	<u>33</u>		
		<input checked="" type="checkbox"/> Manganese			
		<input checked="" type="checkbox"/> Mercury	<u><0.10</u>		
		<input type="checkbox"/> Nitrate			
		<input checked="" type="checkbox"/> Selenium	<u><4</u>		

ORGANIC CHEMISTRY

Parameter	Results mg/1	Parameter	Results mg/1	Parameter	Results mg/1
P&T:GC/MS		EDB		Methoxychlor	
Acid:B/N Ext.		PCB's		Toxaphene	
TOX		Petroleum		2,4-D	

RADIOCHEMISTRY

Parameter	Parameter	Results PCi/1
(MF) Coliform Colonies/100mls	Gross Alpha	
(MPN) Coliform Colonies/100mls	Gross Beta	

Date Received _____ Date Reported _____

Date Extracted _____ Date Analyzed _____

Reported By _____ Lab Number _____

SAMPLE ANALYSES REQUEST

Site Number 670980728687 Field Sample Number 15567
Name of Site Renroh Site Location Holy Ridge
Collected By Jack Butler ID# 44 Date Collected 8-8-89 Time 11:45

Type of Sample:

Environmental	Concentrate	Comments
<input type="checkbox"/> Groundwater (1)	<input type="checkbox"/> Solid (5)	<u>Z - south corner soil</u>
<input type="checkbox"/> Surface Water (2)	<input type="checkbox"/> Liquid (6)	<u>RECEIVED</u>
<input checked="" type="checkbox"/> Soil (3)	<input type="checkbox"/> Sludge (7)	<u>OCT 11 1989</u>
<input type="checkbox"/> Other (4)	<input type="checkbox"/> Other (8)	

INORGANIC CHEMISTRY

SUPERFUND SECTION

Extractables		Total	
Parameter	Results mg/1	Parameter	Results mg/1
<input checked="" type="checkbox"/> Arsenic	<u><0.01</u>	<input checked="" type="checkbox"/> Arsenic	<u><10</u>
<input checked="" type="checkbox"/> Barium	<u><0.04</u>	<input checked="" type="checkbox"/> Barium	<u>12</u>
<input checked="" type="checkbox"/> Cadmium	<u><0.08</u>	<input checked="" type="checkbox"/> Cadmium	<u><16</u>
<input checked="" type="checkbox"/> Chromium	<u><0.20</u>	<input checked="" type="checkbox"/> Chloride	
<input checked="" type="checkbox"/> Lead	<u><1.00</u>	<input checked="" type="checkbox"/> Chromium	<u><39</u>
<input checked="" type="checkbox"/> Mercury	<u><0.02</u>	<input checked="" type="checkbox"/> Copper	
<input checked="" type="checkbox"/> Selenium	<u><0.005</u>	<input checked="" type="checkbox"/> Fluoride	
<input checked="" type="checkbox"/> Silver	<u><0.20</u>	<input checked="" type="checkbox"/> Iron	
		<input checked="" type="checkbox"/> Lead	<u>70</u>
		<input checked="" type="checkbox"/> Manganese	
		<input checked="" type="checkbox"/> Mercury	<u><0.10</u>
		<input checked="" type="checkbox"/> Nitrate	
		<input checked="" type="checkbox"/> Selenium	<u><4</u>

ORGANIC CHEMISTRY

Parameter	Results mg/1	Parameter	Results mg/1	Parameter	Results mg/1
P&T:GC/MS		EDB		Methoxychlor	
Acid:B/N Ext.		PCB's		Toxaphene	
TOX		Petroleum		2,4-D	

MICROBIOLOGY

RADIOCHEMISTRY

Parameter	Parameter	Results PCi/1
(MF) Coliform Colonies/100mls	Gross Alpha	
(MPN) Coliform Colonies/100mls	Gross Beta	

Date Received _____ Date Reported _____

Date Extracted _____ Date Analyzed _____

Reported By _____ Lab Number 15567 AUG 981

SAMPLE ANALYSES REQUEST

Site Number 670980728687 Field Sample Number 15568
Name of Site Renfroh Site Location Holy Ridge
Collected By Tack Butler ID# 44 Date Collected 8-8-89 Time 11:50

Type of Sample:

Environmental * Concentrate
 Groundwater (1) Solid (5)
 Surface Water (2) Liquid (6)
 Soil (3) Sludge (7)
 Other (4) Other (8)

Comments

3 - East corner soil

RECEIVED

OCT 11 1989

INORGANIC CHEMISTRY

SUPERFUND SECTION

Extractables		Total	
Parameter	Results mg/1	Parameter	Results mg/1
✓ Arsenic	<0.01	✓ Arsenic	<9
✓ Barium	<0.04	✓ Barium	16
✓ Cadmium	<0.08	✓ Cadmium	<14
✓ Chromium	<0.20	Chloride	
✓ Lead	<1.00	✓ Chromium	<36
✓ Mercury	<0.02	Copper	
✓ Selenium	<0.005	Fluoride	
✓ Silver	<0.20	Iron	
		✓ Lead	89
		Manganese	<0.10
		✓ Mercury	
		Nitrate	
		✓ Selenium	<3

ORGANIC CHEMISTRY

Parameter	Results mg/1	Parameter	Results mg/1	Parameter	Results mg/1
P&T:GC/MS		EDB		Methoxychlor	
Acid:B/N Ext.		PCB's		Toxaphene	
TOX		Petroleum		2,4-D	
		Endrin		2,4,5-TP (silvex)	
		Lindane			

MICROBIOLOGY

RADIOCHEMISTRY

Parameter	Parameter	Results PCi/1
(MF) Coliform Colonies/100mls	Gross Alpha	
(MPN) Coliform Colonies/100mls	Gross Beta	

Date Received _____ Date Reported _____

Date Extracted _____ Date Analyzed _____

Reported By _____ Lab Number _____

15608 AUG 989

DIVISION OF SOLID WASTE SERVICES
SOLID AND HAZARDOUS WASTE MANAGEMENT BRANCH

Chain of Custody Record

Hazardous Waste Materials

RECEIVED

100

Location of Sampling: Generator Transporter Treatment Facility
 Storage Facility Disposal Facility Landfill
 Other: Superfund

Company's Name Riverside Telephone () None

Address Holy Ridge, N.C.

Collector's Name Jack Butler Telephone (919) 733-2801
signature

Date Sampled Aug. 8, 1989 Time Sampled 11:30 - 12:00

Type of Process Generating Waste Warehouse - 2,4-dinitrophenol

Field Information

Field Sample No. 11720 11721 11722 11723

Chain of Possession:

1. Jack Butler Env. Cncl. Aug. 8 & 9, 1989
signature title inclusive dates

2. Nancy Ward Chemist 8-9-89
signature title inclusive dates

3. _____
signature title inclusive dates

Results reported

signature title date

Instructions: Complete all applicable information including signatures, and submit with analysis request forms.

**SUPERFUND BRANCH
SAMPLE ANALYSES REQUEST**

State Laboratory of Public Health
P. O. Box 28047
306 N. Wilmington Street
Raleigh, 27611

Site Number 670980728687 Field Sample Number 11720
Name of Site Renroh Site Location Holy Ridge
Collected By Jack Butler ID# 44 Date Collected 8-8-89 Time 11:35

Type of Sample:

Environmental	Concentrate	Comments
<input type="checkbox"/> Groundwater (1)	<input type="checkbox"/> Solid (5)	
<input type="checkbox"/> Surface Water (2)	<input type="checkbox"/> Liquid (6)	
<input checked="" type="checkbox"/> Soil (3)	<input type="checkbox"/> Sludge (7)	
<input type="checkbox"/> Other (4)	<input type="checkbox"/> Other (8)	

INORGANIC CHEMISTRY

~~SUPERFUND BRANCH~~

Extractables		Total			
Parameter	Results mg/l	Parameter	Results mg/l	Parameter	Results mg/l
Arsenic		Arsenic		Silver	
Barium		Barium		Sulfates	
Cadmium		Cadmium		Zinc	
Chromium		Chloride		Ph	
Lead		Chromium		Conductivity	
Mercury		Copper		TDS	
Selenium		Fluoride		TOC	
Silver		Iron			
		Lead			
		Manganese			
		Mercury			
		Nitrate			
		Selenium			

ORGANIC CHEMISTRY

Parameter	Results mg/l	Parameter	Results mg/l	Parameter	Results mg/l
✓ P&T:GC/MS		EDB		Methoxychlor	
✓ Acid:B/N Ext.		PCB's		Toxaphene	
TOX		Petroleum		2,4-D	
		Endrin		2,4,5-TP (silvex)	
		Lindane			

MICROBIOLOGY

RADIOCHEMISTRY

Parameter	Parameter	Results PCi/1
(MF) Coliform Colonies/100mls	Gross Alpha	
(MPN) Coliform Colonies/100mls	Gross Beta	

Date Received 8-9-89 NW

Date Reported 7/1/87
BVA PT

Date Extracted 8/15-89 AA

Date Analyzed 8-17-87 DD 17-87-900
902230

Reported By John L. Neal

Lab Number

SAMPLE ANALYSES REQUEST

Site Number 670980728687 Field Sample Number 11722
Name of Site Renrock Site Location Holy Ridge
Collected By Jack Butler ID# 44 Date Collected 8-8-89 Time 11:50

Type of Sample:

Environmental	Concentrate	Comments
<input type="checkbox"/> Groundwater (1)	<input type="checkbox"/> Solid (5)	<u>3 - East Corner Soil</u>
<input type="checkbox"/> Surface Water (2)	<input type="checkbox"/> Liquid (6)	<u>RECEIVED</u>
<input checked="" type="checkbox"/> Soil (3)	<input type="checkbox"/> Sludge (7)	<u>SEP 14 1989</u>
<input type="checkbox"/> Other (4)	<input type="checkbox"/> Other (8)	

INORGANIC CHEMISTRY

SUPERFUND BRANCH

Extractables		Total			
Parameter	Results mg/1	Parameter	Results mg/1	Parameter	Results mg/1
Arsenic		Arsenic		Silver	
Barium		Barium		Sulfates	
Cadmium		Cadmium		Zinc	
Chromium		Chloride		Ph	
Lead		Chromium		Conductivity	
Mercury		Copper		TDS	
Selenium		Fluoride		TOC	
Silver		Iron			
		Lead			
		Manganese			
		Mercury			
		Nitrate			
		Selenium			

ORGANIC CHEMISTRY

Parameter	Results mg/1	Parameter	Results mg/1	Parameter	Results mg/1
<input checked="" type="checkbox"/> P&T:GC/MS		EDB		Methoxychlor	
<input checked="" type="checkbox"/> Acid:B/N Ext.		PCB's		Toxaphene	
TOX		Petroleum		2,4-D	
		Endrin		2,4,5-TP (silvex)	
		Lindane			

MICROBIOLOGY

RADIOCHEMISTRY

Parameter	Parameter	Results PCi/1
(MF) Coliform Colonies/100mls	Gross Alpha	
(MPN) Coliform Colonies/100mls	Gross Beta	

Date Received 8-9-89 7W

Date Reported

BPA

Date Extracted 8-15-89 AA

Date Analyzed

PT 9-7-89 7W
902232

Reported By

Lab Number

SAMPLE ANALYSES REQUEST

Site Number 670980728687

Field Sample Number 11723

Name of Site Renrock

Site Location Holy Ridge

Collected By Jack Butler ID# 44

Date Collected 8-8-89

Time 11:55

Type of Sample:

Environmental Concentrate

Comments

4-North Corner Soil

- Groundwater (1) Solid (5)
- Surface Water (2) Liquid (6)
- Soil (3) Sludge (7)
- Other (4) Other (8)

RECEIVED

8-11-89

INORGANIC CHEMISTRY

SUPERFUND BRANCH

Extractables				Total	
Parameter	Results mg/1	Parameter	Results mg/1	Parameter	Results mg/1
Arsenic		Arsenic		Silver	
Barium		Barium		Sulfates	
Cadmium		Cadmium		Zinc	
Chromium		Chloride		Ph	
Lead		Chromium		Conductivity	
Mercury		Copper		TDS	
Selenium		Fluoride		TOC	
Silver		Iron			
		Lead			
		Manganese			
		Mercury			
		Nitrate			
		Selenium			

ORGANIC CHEMISTRY

Parameter	Results mg/1	Parameter	Results mg/1	Parameter	Results mg/1
<input checked="" type="checkbox"/> P&T:GC/MS		EDB		Methoxychlor	
<input checked="" type="checkbox"/> Acid:B/N Ext.		PCB's		Toxaphene	
TOX		Petroleum		2,4-D	

2,4,5-TP (silvex)

Lindane

STATE LABORATORY OF PUBLIC HEALTH
 DIVISION OF HEALTH SERVICES, N.C. DEPARTMENT OF HUMAN RESOURCES
 P.O. BOX 28047 - 306 N. WILMINGTON, ST., RALEIGH, N.C. 27611

ORGANIC CHEMICAL ANALYSIS

BASE/NEUTRAL AND ACID EXTRACTABLES	LAB NO	902230	902231	902232	902233		
COMPOUND	FIELD #	11720	11721	11722	11723		
	TYPE	(3)	(3)	(3)	(3)	()	()
	UNITS	ppb (µg/kg)	ppb (µg/kg)	ppb (µg/kg)	ppb (µg/kg)	µg/l	µg/l
N-nitrosodimethylamine	10/330	u	u	u	u		
bis(2-chloroethyl)ether							
2-chlorophenol							
phenol							
1,3-dichlorobenzene							
1,4-dichlorobenzene							
1,2-dichlorobenzene							
bis(2-chloroisopropyl)ether							
hexachloroethane							
N-nitroso-di-n-propylamine							
nitrobenzene							
isophorone							
2-nitrophenol							
2,4-dimethylphenol							
bis(2-chloroethoxy)methane							
2,4-dichlorophenol							
1,2,4-trichlorobenzene							
naphthalene							
hexachlorobutadiene							
4-chloro-m-cresol							
hexachlorocyclopentadiene							
2,4,6-trichlorophenol							
2-chloronaphthalene							
acenaphthylene							
dimethyl phthalate							
2,6-dinitrotoluene							
acenaphthene							
2,4-dinitrophenol	50/1650						
2,4-dinitrotoluene	10/330						
4-nitrophenol	50/1650						
fluorene	10/330						
4-chlorophenylphenylether							
diethyl phthalate							
4,6-dinitro-o-cresol	50/1650						
diphenylamine							
azobenzene							
4-bromophenylphenylether	10/330						
hexachlorobenzene	10/330						
pentachlorophenol	50/1650						
phenanthrene	10/330						
anthracene							
dibutyl phthalate							
fluoranthene							

MDL

H₂O/501L

J - Estimated value.

K - Actual value is known to be less than value given.

L - Actual value is known to be greater than value given.

U - Material was analyzed for but not detected. The number is the Minimum Detection Limit. MDL

NA - Not analyzed.

1/ - Tentative identification.

2/ - On NRDC List of Priority Pollutants.

STATE LABORATORY OF PUBLIC HEALTH
 DIVISION OF HEALTH SERVICES, N.C. DEPARTMENT OF HUMAN RESOURCES
 P.O. BOX 28047 - 306 N. WILMINGTON, ST., RALEIGH, N.C. 27611

ORGANIC CHEMICAL ANALYSIS

BASE/NEUTRAL AND ACID EXTRACTABLES	LAB NO	902230	902231	902232	902233		
COMPOUND	FIELD #	11720	11721	11722	11723	()	()
	TYPE	(3)	(3)	(3)	(3)	()	()
	UNITS	µg/kg	µg/kg	µg/kg	µg/kg	µg/l	µg/kg
pyrene	10/330	u	u	u	u		
benzidine	50/1650						
butyl benzyl phthalate	10/330						
benz(a)anthracene		↓					
chrysene		↓					
3,3-dichlorobenzidine	50/1650					10/14/1989	
bis(2-ethylhexyl)phthalate	10/330						
di-n-octyl phthalate	10/330						
benzo(b)fluoranthene	50/1650						
benzo(k)fluoranthene		↓					
benzo(a)pyrene		↓					
indeno(1,2,3-cd)pyrene		↓					
dibenzo(a,h)anthracene							
benzo(g,h,i)perylene						↓	
aniline	50/1650	u	u	u	u		
benzoic acid							
benzyl alcohol		↓					
4-chloroaniline		↓					
dibenzofuran	10/330						
2-methylnaphthalene							
2-methylphenol							
4-methylphenol		↓					
2-nitroaniline	50/1650						
3-nitroaniline		↓					
4-nitroaniline							
2,4,5-trichloropheno1		↓	↓	↓	↓	↓	

MDL

H₂O/501L

- Estimated value.
- K - Actual value is known to be less than value given.
- L - Actual value is known to be greater than value given.
- U - Material was analyzed for but not detected. The number is the Minimum Detection Limit. MDL
- NA - Not analyzed.
- 1/ - Tentative identification.
- 2/ - On NRDC List of Priority Pollutants.

STATE LABORATORY OF PUBLIC HEALTH
DIVISION OF HEALTH SERVICES, N.C. DEPARTMENT OF HUMAN RESOURCES
P.O. BOX 28047 - 306 N. WILMINGTON, ST., RALEIGH, N.C. 27611

ORGANIC CHEMICAL ANALYSIS

PURGEABLE COMPOUNDS	LAB NO	902230	902231	902232	902233		
COMPOUND	FIELD #	11720	11721	11722	11723	()	()
	TYPE	(3)	(3)	(3)	(3)	()	()
	UNITS	µg/l µg/kg					
chloromethane	10	u	u	u	u		
bromomethane	10						
dichlorodifluoromethane	5						
vinyl chloride	10						
chloroethane	10						
methylene chloride	5						
trichlorofluoromethane	1						
ethene, 1,1-dichloro							
ethane, 1,1-dichloro-							
1,2-trans-dichloroethylene							
chloroform							
ethane, 1,2-dichloro-							
ethane, 1,1,1-trichloro-							
carbontetrachloride	1						
bromodichloromethane	10						
propane, 1,2-dichloro-	5						
1,3-trans-dichloropropene	1						
trichloroethylene	1						
chlorodibromomethane	10						
benzene	5						
ethane, 1,1,2-trichloro-	1						
1,3-cis-dichloropropene	1						
2-chloroethyl vinyl ether	10						
bromoform	10						
ethane, 1,1,2,2-tetrachloro-	5						
ethene, tetrachloro-	1						
toluene	1						
chlorobenzene							
ethylbenzene	1	✓	✓	✓	✓	✓	
acetone	10	u	u	u	u		
2-butanone	10						
carbodisulfide	5						
2-hexanone	10						
4-methyl-2-pentanone	10						
styrene	5						
vinyl acetate	10						
xylenes (total)	.5	✓	✓	✓	✓	✓	
		1MDA					

J - Estimated value.

Actual value is known to be less than value given.

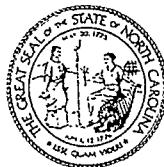
Actual value is known to be greater than value given.

U - Material was analyzed for but not detected. The number is the Minimum Detection Limit.

NA - Not analyzed.

1/ - Tentative ide

2/ - Tentative Identification.
2/ - On NRDC List of Priority


✓ - ON ARDC List of Priority Pollutants.

Appendix C

References

REFERENCES

1. Site Visit Report from Jack Butler, NC Superfund Section to Robert Morris, US EPA Region IV, 9 August 1989.
2. Memo from Dan Oakley, NC Department of Justice, to Chuck Wakild and O.W. Strickland, NC DHR/DHS, 25 January 1980.
3. Letter from Daniel C. Oakley, Assistant Attorney General, to Henry L. Stevens, III, District Judge, 15 February 1980.
4. Classifications and Water Quality Standards Assigned to the Cape Fear River Basin. Department of Natural and Economic Resources, Division of Environmental Management, Raleigh, NC, 15 NCAC2B.0311, 1989.
5. Harry E. LeGrand. Geology and Ground-Water Resources of Wilmington-New Bern Area. North Carolina Department of Water Resources Division of Ground-Water, Ground-Water Bulletin No. 1, 1960.
6. Clay, J.W., D.M. Orr, Jr. and A.W. Stuart. North Carolina Atlas: Portrait of A Changing Southern State. University of NC Press, Chapel Hill, 1975.
7. Uncontrolled Hazardous Waste Site Ranking System; A User's Manual. National Oil and Hazardous Substances Contingency Plan, Appendix A (40 CFR 300), or (47 FR 31219), 16 July 1982.
8. North Carolina State Governmental Statistical Abstract. Fifth Edition, North Carolina State Data Center, Research and Planning Service, Office of State Data Center, Research and Planning Services, Office of State Budget and Management.
9. Preliminary Assessment Update from Jack Butler, NC Superfund Section, to Susan Deihl, US EPA Region IV, 25 April 1988.
10. Memo from Jack Butler, NC Department of Human Resources/Division of Health Services, to file, Water Service within 3 miles of Renroh, NCD980728687, 22 April 1988.
11. Memo and attachments from Pat DeRosa, NC Superfund Branch, to Superfund Branch Staff, 18 May 1989.
12. Sax, N.I. Dangerous Properties of Industrial Materials, 6th edition, Van Nostrand Reinhold Co., New York, 1984.

North Carolina Department of Human Resources
Division of Health Services
P.O. Box 2091 • Raleigh, North Carolina 27602-2091

James G. Martin, Governor
David T. Flaherty, Secretary

9 August 1989

Ronald H. Levine, M.D., M.P.H.
State Health Director

Mr. Robert Morris
EPA NC CERCLA Project Officer
EPA Region IV Waste Division
345 Courtland Street, NE
Atlanta, GA 30365

Dear Mr. Morris:

RE: Site Visit Report
Renroh, NCD980728687
Highway 50 and Lloyd Street
Holly Ridge, Onslow County, NC 28445

The Renroh site is located at the corner of Hwy. 50 and Lloyd Street in Holly Ridge, NC. This is in Onslow County. The county code is 67 and this is in the third Congressional District.

In 1977 approximately 2,000 drums of 2,4-dinitrophenol were discovered in a dilapidated US Army gym in Holly Ridge, NC. This building was originally built in the early 1940's as part of Camp David. At the time of the discovery the building was owned by Doug Horner, Renroh, and was being used as a warehouse.

When discovered, the roof of the building had caved in and a number of the drums had broken open. In 1980 the drums were removed under a court order. Most of the drums were moved to Lackey Inds. Whse. (NCD080891039) in Whiteville, NC. Several hundred were reportedly sent to Renroh warehouse in New Bern, and American Cyanamide in Damascus, Virginia, and approximately 100 drums were sold to Mr. Marlow Bostic (Bostic Drum Site, NCD982119554), and some were reportedly shipped to an unknown company in Taiwan.

After the drums were removed from the Renroh site, the property was owned for approximately one year by the City of Holly Ridge who sold it to Allen Hobbs in 1982. The dilapidated building has been removed and the site is presently a vacant lot. The concrete slab floor and fence that was erected around the building after the drum removal remain on the site.

Mr. Robert Morris
8-9-89
Page 2

On August 8, 1989, Jack Butler and Ed Wallingford, NC Superfund Section performed a site investigation visit to the subject site. Mr. Les Haste and Mr. Sam Frazelle, Onslow County Health Department were also present during a portion of this visit. Surface soil samples were collected on the site. Laboratory results are pending. No residential wells were observed in the immediate vicinity of the site.

If you have any questions, please contact me at (919) 733-2801.

Sincerely,

Jack Butler, Environmental Engineer
Superfund Section
Solid Waste Management Division

JB/ds/7

✓ Onslow
Ref. 2

COPY

State of North Carolina
Department of Justice
RALEIGH

25 January 1980

MEMO TO: Chuck Wakild, W. O. Strickland
FROM: Dan Oakley
RE: State v. Renroh, Inc. & Onslow County

A hearing on a motion for civil contempt against the defendants was conducted by Judge Stevens in Jacksonville on January 23, 1980. An order will shortly be signed by the Judge setting an average removal rate, for the barrels of "2-4 Dinitrophenol", of .200 per week over any 4 week period, beginning January 28, 1980 and extending until all barrels are removed. There are approximately 1400-1800 barrels remaining. The Judge also is requiring the defendants to locate a back-up storage facility in the event the present disposition alternative (a Whiteville warehouse) becomes unavailable. He specifically requested the State to provide whatever assistance it could in securing a suitable storage site within or without Holly Ridge. Dave Hershman of this office will be making such an effort, but we would appreciate your assistance (Division of Environmental Management, Division of Health Services) since you have regional offices in the area. What we are primarily interested in is a listing of possible warehouse facilities which could store barrels for a short period of time.

Please let me know as soon as possible if you have any comments or suggestions.

/dw

Ref. 3

Onslow

dw/c

RUFUS L. EDMISTEN
ATTORNEY GENERAL

State of North Carolina

Department of Justice

P. O. Box 629
RALEIGH
27602

15 February 1980

Honorable Henry L. Stevens, III
P.O. Box 26
Kenansville, North Carolina 28249

RE: Town of Holly Ridge v. Horner, et al, 78CVS 715
State v. Renroh, Inc., et al, 78CVS1263
(Onslow County)

Dear Judge Stevens:

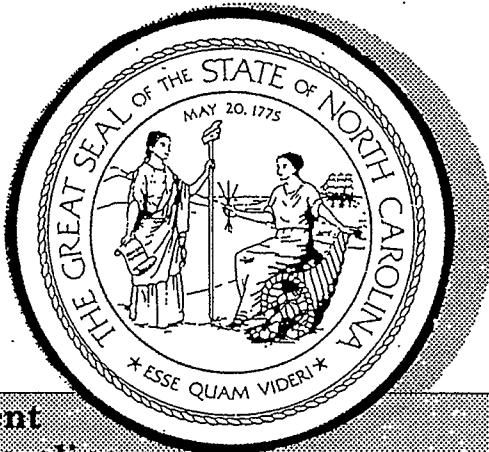
In our hearing concerning this matter on January 23, 1980, you requested the State to assist in the location of a back-up facility for storage of the Dinitrophenol, in the event the current Whiteville warehouse becomes unavailable. Mr. Dave Hershman of this office has spoken with Ms. Lavinia Thaxton of the Port City Bonded Warehouse in Charleston, South Carolina (803/747-4838), which received two shipments of the material in November, 1979. Ms. Thaxton indicated that space at the facility was limited at this time, but they would be interested in discussing storage when the exact number of drums is known.

The State suggests that, if the Whiteville facility becomes unavailable, Mr. Horner or Continental Trading Company contact the Port City Bonded Warehouse regarding storage.

I trust this information will be helpful to the defendants. Please advise if you feel the State should do anything else. Thank you for your assistance.

Sincerely,

RUFUS L. EDMISTEN
Attorney General


Daniel C. Oakley
Daniel C. Oakley
Assistant Attorney General

DCO/dw

cc: Frank Erwin
Laurence Stith
John D. Warlick
C. E. Hancock
Dr. Fred Liu

STATE OF NORTH CAROLINA
DEPARTMENT OF
NATURAL RESOURCES AND
COMMUNITY DEVELOPMENT

Classifications and
Water Quality Standards
Assigned to
The Waters of
The Cape Fear River Basin

Division of Environmental Management
Raleigh, North Carolina

Reprint from North Carolina Administrative Code: 15 NCAC 2B .0311
Current through: June 30, 1989

SECTION .0300 - ASSIGNMENT OF STREAM CLASSIFICATIONS

.0301 CLASSIFICATIONS: GENERAL

(a) Schedule of Classifications. The classifications assigned to the waters of the State of North Carolina are set forth in the schedules of classifications and water quality standards assigned to the waters of the river basins of North Carolina, 15 NCAC 2B .0302 to .0317 which are on file in the Office of the Attorney General of North Carolina. These classifications are based upon the existing or contemplated best usage of the various streams and segments of streams in the basin, as determined through studies and evaluations and the holding of public hearings for consideration of the classifications proposed.

(b) Stream Names. The names of the streams listed in the schedules of assigned classifications were taken as far as possible from United States Geological Survey topographic maps. Where topographic maps were unavailable, U.S. Corps of Engineers maps, U.S. Department of Agriculture soil maps, and North Carolina highway maps were used for the selection of stream names.

(c) Classifications. The classifications assigned to the waters of North Carolina are denoted by the letters WS-I, WS-II, WS-III, B, C, SA, SB, and SC in the column headed "class." A brief explanation of the "best usage" for which the waters in each class must be protected is given as follows:

Fresh Waters

Class WS-I: waters protected as water supplies which are in natural and uninhabited or predominantly undeveloped (not urbanized) watersheds; no point source discharges are permitted and local land management programs to control nonpoint source pollution are required; suitable for all Class C uses;

Class WS-II: waters protected as water supplies which are in low to moderately developed (urbanized) watersheds; discharges are restricted to primarily domestic wastewaters or industrial non-process waters specifically approved by the commission; local land management programs to control nonpoint source pollution are required; suitable for all Class C uses;

Class WS-III: water supply segment with no categorical restrictions on watershed development or discharges; suitable for all Class C uses;

Class B: primary recreation and any other usage specified by the "C" classification;

Class C: fish and wildlife propagation, secondary recreation, agriculture, and other uses requiring waters of lower quality.

Tidal Salt Waters

Class SA: shellfishing for market purposes and any other usage specified by the "SB" and "SC" classification;

Class SB: primary recreation and any other usage specified by the "SC" classification;

Class SC: fish and wildlife propagation, secondary recreation, and other uses requiring waters of lower quality.

Supplemental Classifications

Trout Waters: Suitable for natural trout propagation and maintenance of stocked trout;

Swamp Waters: Waters which have low velocities and other natural characteristics which are different from adjacent streams;

NSW: Nutrient sensitive waters which require limitations on nutrient inputs;

ORW: outstanding resource waters which are unique and special waters of exceptional state or national recreational or ecological significance which require special protection to maintain existing uses.

(d) Water Quality Standards. The water quality standards applicable to each classification assigned are those established in 15 NCAC 2B .0200, Classifications and Water Quality Standards Applicable to the Surface Waters of North Carolina, as adopted by the North Carolina Environmental Management Commission.

(e) Index Number

- (1) Reading the Index Number. The index number appearing in the column so designated is an identification number assigned to each stream or segment of a stream, indicating the specific tributary progression between the main stem stream and the tributary stream.
- (2) Cross-Referencing the Index Number. The inclusion of the index number in the schedule is to provide an adequate cross reference between the classification schedules and an alphabetic list of streams.
- (f) Classification Date. The classification date indicates the date on which enforcement of the provisions of Section 143-215.1 of the General Statutes of North Carolina became effective with reference to the classification assigned to the various streams in North Carolina.
- (g) Reference. Copies of the schedules of classifications adopted and assigned to the waters of the various river basins may be obtained at no charge by writing to:

Director

Division of Environmental Management
Department of Natural Resources
and Community Development
Post Office Box 27687

Raleigh, North Carolina 27611

- (h) Places where the schedules may be inspected:

Division of State Library
Archives -- State Library Building
109 E. Jones Street
Raleigh, North Carolina.

- (i) Unnamed Streams.

- (1) Any stream which is not named in the schedule of stream classifications carries the same classification as that assigned to the stream segment to which it is tributary except:
 - (A) unnamed streams specifically described in the schedule of classifications; or
 - (B) unnamed freshwaters tributary to tidal saltwaters will be classified "C"; or
 - (C) after November 1, 1986, any newly created areas of tidal saltwater which are connected to Class SA waters by approved dredging projects will be classified "SC" unless case-by-case reclassification proceedings are conducted.
 - (2) The following river basins have different policies for unnamed streams entering other states or for specific areas of the basin:
Hiwassee River Basin (Rule .0302)
Little Tennessee River Basin and Savannah River
Drainage Area (Rule .0303)
French Broad River Basin (Rule .0304)
Watauga River Basin (Rule .0305)
Broad River Basin (Rule .0306)
New River Basin (Rule .0307)
Catawba River Basin (Rule .0308)
Yadkin-Pee Dee River Basin (Rule .0309)
Lumber River Basin (Rule .0310)
Roanoke River Basin (Rule .0313)
Tar-Pamlico River Basin (Rule .0316)
Pasquotank River Basin (Rule .0317)

*History Note: Statutory Authority G.S. 143-214.1; 143-215.1; 143-215.3(a)(1);
Eff. February 1, 1976;
Amended Eff. November 1, 1986; February 1, 1986; January 1, 1985;
September 9, 1979.*

.0311 CAPE FEAR RIVER BASIN

(a) Places where the schedules may be inspected:

- (1) Clerk of Court:
 - Alamance County
 - Bladen County
 - Brunswick County
 - Caswell County
 - Chatham County
 - Columbus County
 - Cumberland County
 - Duplin County
 - Durham County
 - Forsyth County
 - Guilford County
 - Harnett County
 - Hoke County
 - Lee County
 - Montgomery County
 - Moore County
 - New Hanover County
 - Onslow County
 - Orange County
 - Pender County
 - Randolph County
 - Rockingham County
 - Sampson County
 - Wake County
 - Wayne County
- (2) North Carolina Department of Natural Resources and Community Development:
 - (A) Winston-Salem Regional Office
 - 8003 Silas Creek Parkway Extension
 - Winston-Salem, North Carolina
 - (B) Fayetteville Regional Office
 - Wachovia Building
 - Suite 714
 - Fayetteville, North Carolina
 - (C) Raleigh Regional Office
 - 3800 Barrett Drive
 - Raleigh, North Carolina
 - (D) Washington Regional Office
 - 1502 North Market Street
 - Washington, North Carolina
 - (E) Wilmington Regional Office
 - 7225 Wrightsville Avenue
 - Wilmington, North Carolina

.0311 CAPE FEAR RIVER BASIN

Name of Stream	Description	Class	Classification	
			Date	Index No.
	of Snows Cut exclusive of restricted areas listed below			
Turkey Creek	From source to Intracoastal Waterway	SA	8/9/81	18-87-1
Everett Bay	Entire Bay excluding that portion in King Creek Restricted Area	SA	8/9/81	18-87-2
Stump Sound	Entire Sound excluding that portion in King Creek Restricted Area	SA	8/9/81	18-87-3
King Creek Restricted Area (Spicer Bay)	Inside a line beginning at a point on the mainland and running due south 100 yards to reflector buoy #43 in the Intracoastal Waterway, thence along the south side of the Intracoastal Waterway Channel 1,200 yards to flashing light channel marker #39, thence due north 200 yards to a point on the mainland, then along the shore line to the point of beginning to include all of King Creek	SC Sw	4/1/59	18-87-4
Hardison Creek	From source to Intracoastal Waterway	SA	8/9/81	18-87-5
Batts Mill Creek (Barlow Creek)	From source to Intracoastal Waterway	SA	8/9/81	18-87-6
County Line Branch	From source to Batts Mill Creek	SA	8/9/81	18-87-6-1
Cypress Branch	From source to Batts Mill Creek	SA	8/9/81	18-87-6-2
Old Mill Creek	From source to Intracoastal Waterway	SA	8/9/81	18-87-7
Beckys Creek (Bishops Creek)	From source to Intracoastal Waterway	SA	8/9/81	18-87-8
Virginia Creek	From source to Intracoastal Waterway	SA	8/9/81	18-87-9
Mullet Run	From source to Virginia Creek	SA	8/9/81	18-87-9-1
Topsail Sound	Entire Sound	SA	8/9/81	18-87-10
Banks Channel	From New Topsail Inlet to Topsail Sound	SA	8/9/81	18-87-10-1
Nixons Creek	From source to Intracoastal Waterway	SA	8/9/81	18-87-11
Old Topsail Creek	From source to Intracoastal Waterway	SA	8/9/81	18-87-12
Howard Channel	From Old Topsail Inlet to Intracoastal Waterway	SA	8/9/81	18-87-13
Mill Creek (Betts Creek)	From source to Intracoastal Waterway	SA	8/9/81	18-87-14
Long Point Channel	From Old Topsail Inlet to Intracoastal Waterway	SA	8/9/81	18-87-15
Green Channel	From Rich Inlet to Intracoastal Waterway	SA	8/9/81	18-87-16
Cedar Snag Creek	From Green Channel to Intracoastal Waterway	SA	8/9/81	18-87-17
Butler Creek	From Nixon Channel to Intracoastal Waterway	SA	8/9/81	18-87-18
Futch Creek	From source to Intracoastal Waterway	SA	8/9/81	18-87-19
Nixon Channel	From Rich Inlet to Intracoastal Waterway	SA	8/9/81	18-87-20
Middle Sound	Entire Sound excluding that portion in Wrightsville Restricted Area	SA	8/9/81	18-87-21
Pages Creek	From source to Intracoastal Waterway	SA	8/9/81	18-87-22
Howe Creek	From source to Intracoastal Waterway	SA	8/9/81	18-87-23
Wrightsville Recreational Area	In any waters within a line beginning at a point on the mainland along the	SB #	10-1-87	18-87-24

NORTH CAROLINA
DEPARTMENT OF WATER RESOURCES

HARRY E. BROWN, *Director*

DIVISION OF GROUND WATER

HARRY M. PEEK, *Chief*

GROUND-WATER BULLETIN NUMBER 1

GEOLOGY AND GROUND-WATER RESOURCES OF WILMINGTON-NEW BERN AREA

By

HARRY E. LeGRAND
Geologist, United States Geological Survey

PREPARED IN COOPERATION WITH THE GEOLOGICAL SURVEY

UNITED STATES DEPARTMENT OF THE INTERIOR

1960

Onslow County

Geology

The oldest formation penetrated by a water well in Onslow County is the Peedee. It is not known to crop out but lies within 30 feet of the surface in some valleys northwest of Richlands. Coastward the Peedee is more deeply buried, lying under a wedge of Castle Hayne limestone that thickens toward the coast. The Castle Hayne is exposed at many places along New River between Richlands and Jacksonville. Southwest Creek and White Oak River are other streams whose channels lie in the limestone in the northern part of the county. The Yorktown formation overlies the Castle Hayne, but it has been eroded away in parts of the county north of Jacksonville. Along the coast the Yorktown reaches a thickness of about 60 feet but inland it is thinner. The Yorktown is exposed in several ravines near Silverdale (Brown, P. M., personal communication) and occurs within 60 feet of the surface in several wells at Camp Lejeune. A thin layer of sand and clay—chiefly sand—of Pleistocene age conceals the older formations in the interstream areas.

Ground Water

Three main aquifers furnish water to wells in Onslow County. These are the surficial sands, the sands of the Peedee, and the Tertiary limestone unit.

The surficial sand covers the entire county to a depth generally ranging from 10 to 30 feet. As the water table almost everywhere is within 15 feet of the surface, well points penetrate enough saturated sand of the surficial deposits to yield sufficient water for domestic purposes.

Sands of the Peedee formation furnish water to drilled wells in the northwest part of Onslow County. The ability of the sands of the Peedee to yield water is shown by a city well 535 feet deep at Richlands, which yields 500 gpm at a drawdown of about 80 feet. Except for 30 feet of sand and clay at the surface, the well tapped only the Peedee formation. The water-bearing unit consists of sand, interbedded with clay and indurated calcareous beds. South and east of Richlands little water is pumped from the Peedee because the overlying Tertiary limestone aquifer furnishes adequate water. Except in the northwestern third of the county, salty water probably occurs in the lower part of the Peedee formation, and the entire formation may contain salty water in the vicinity of New River to the south of Jacksonville.

The Tertiary limestone unit, represented largely

by the Castle Hayne limestone, is the aquifer which drilled wells tap south of U. S. Highway 17. The limestone thins toward the north, but it is an important aquifer as far north as Richlands. The New River is entrenched in the limestone between Richlands and Jacksonville, resulting in a large aggregate discharge of ground water from the limestone into the river. Some of the discharge is in the form of springs in the vicinity of Catherine Lake. One spring, 1½ miles south of Catherine Lake is reported to have flowed 1,500 gallons a minute (Pratt, 1908, p. 92). The limestone unit varies considerably in composition and degree of consolidation from place to place. Almost everywhere one or more indurated beds occur, and open-end wells can be used. At Camp Lejeune, however, consolidated beds are not prominent, and gravel-wall wells are used.

The permeability of the limestone differs greatly from place to place. The wells at Camp Davis (Holly Ridge) are between 100 and 180 feet deep and draw water from the limestone. The specific capacity of wells ranged from about 18 to 125 gpm per foot of drawdown. One well yielded 250 gpm at a drawdown of only 4 feet, whereas one of the poorer wells yielded 200 gpm at a drawdown of 11 feet.

At Camp Lejeune the permeability of the limestone is considerably less than at Holly Ridge. Individual gravel-walled wells drawing water from sand and semiconsolidated limestone yield as much as 250 gpm. In most of the wells the specific capacity is 5 to 10 gpm per foot of drawdown. In order to guard against salt-water encroachment the wells are pumped so that the pumping level does not get below about 20 feet below sea level.

As in adjacent counties, the surficial sand yields water that is soft and is low in dissolved mineral matter. The water generally contains enough dissolved carbon dioxide to render it corrosive. The water in sand of the Peedee is a soft, sodium bicarbonate water that is satisfactory for almost all uses. A hard, calcium bicarbonate water characterizes the Tertiary limestone aquifer. In places the water in the limestone contains objectionable amounts of iron.

The most serious problem concerning the quality of water in Onslow County is the possibility of salt-water encroachment. Figure 8 shows the approximate depth to water containing as much as 250 ppm of chloride. This map indicates that care must be taken to keep pumping levels relatively shallow in the general area surrounding Jacksonville and Camp Lejeune. There is no evidence that salt-water encroachment has occurred, and there is no cause for

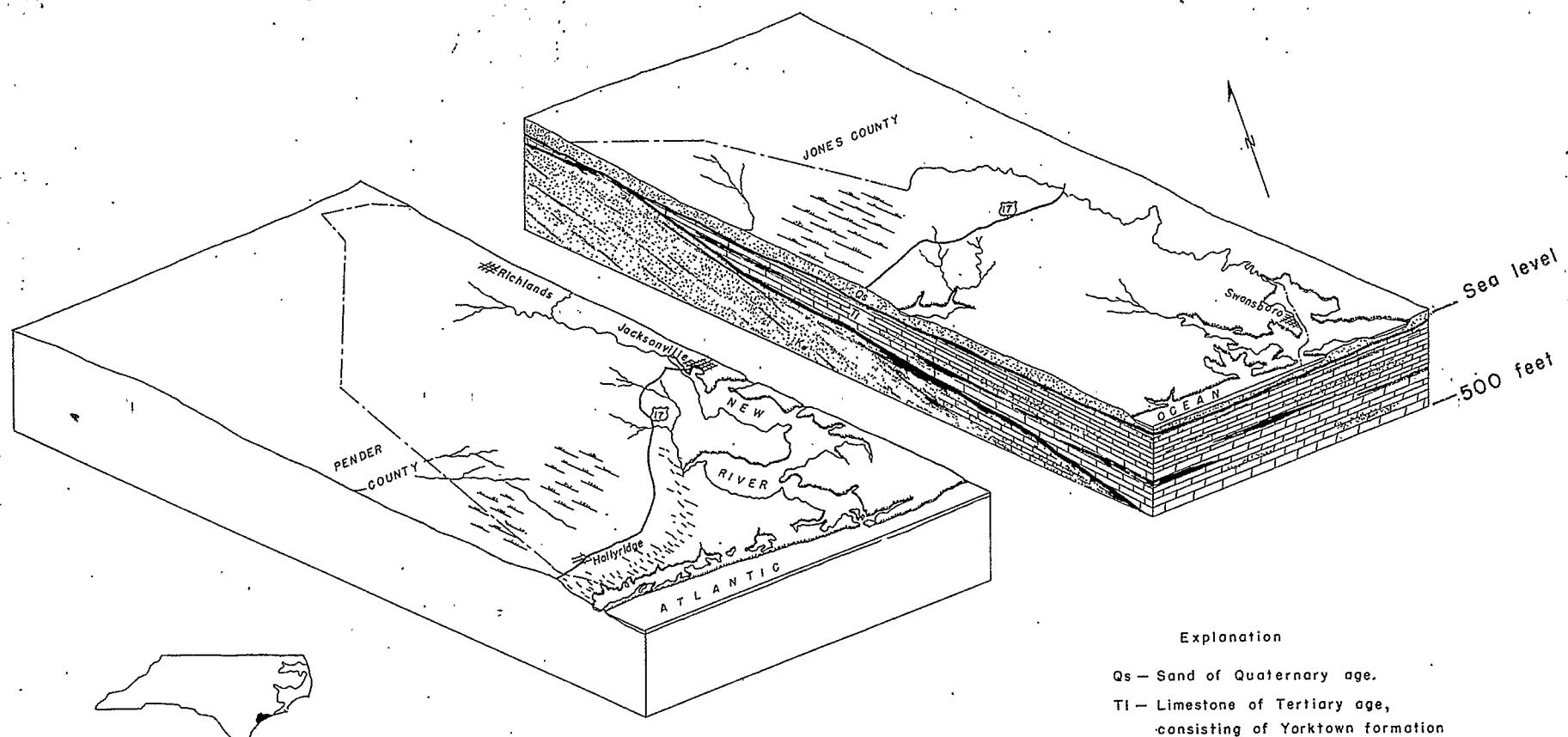


Figure 19. Block diagram of Onslow County showing geologic section cut through a line connecting Richlands and Jacksonville and extending to the ocean.

alarm, as long as the wells are dispersed and the pumping level is controlled.

Onslow County

Number 54

Location Jacksonville, North Carolina in Camp Lejeune just south of N. C. Route 24 at bridge crossing over Northeast Creek.

Owner: Rural Electrification Authority

Date drilled: 1941

Driller: C. W. Laumon Co.

Elevation of well: 22 feet above sea level

Hydrologic Information

Diameter of well: 8 inches

Depth of well: 588 feet

Cased to: 253 feet

Finish: screens

Static (nonpumping) water level: 7 feet below land surface (1941)

Yield: Unknown

Log of Well

Depth
(feet)

0-58	No sample. <i>Post-Miocene (?) surficial sand</i>	135-199	Calcareous sand and clay, light-gray; Same as 88-135-foot interval with glauconite increasing to 5 percent. Ostracoda and Foraminifera rare.
58-78	Sand, white; 85 percent fine-grained angular quartz sand. 15 percent white clay matrix, unconsolidated. No microfossils. <i>Upper (?) Eocene</i> —upper part of Castle Hayne limestone	199-225	Calcareous sand and clay, light-gray; Same as 135-199-foot interval. Ostracoda and Foraminifera rare.
73-79	Sandy, shell, limestone, white; 35 percent medium to fine-grained subrounded to subangular quartz sand. 25 percent broken partially-recrystallized shell fragments. 40 percent white calcareous matrix, well consolidated and hard. Ostracoda and Foraminifera very rare.	225-253	Calcareous sand and clay, light-gray; Same as 135-199-foot interval. Ostracoda and Foraminifera rare.
79-83	Calcareous sand, and clay, light-gray; 60 percent medium to fine-grained subrounded to subangular quartz sand. 35 percent calcareous clay matrix, moderately consolidated. 5 percent dark-green fine-grained glauconite. Trace of black phosphate grains. Ostracoda and Foraminifera very rare.	253-273	Calcareous sand and clay, light-gray; Same as 135-199-foot interval. Ostracoda and Foraminifera rare. Ostracoda from the 88-253-foot intervals include: <i>Brachycythere martini</i> Murray and Hussey <i>Trachyleberis rukasi</i> (Gooch) <i>Pterygocythereis washingtonensis</i> Swain <i>Actinocythereis hilgardi</i> (Howé and Garrett) <i>Actinocythereis stenzeli</i> (Stephenson) <i>Upper Cretaceous</i> —Peedee formation
83-88	Sandy, shell limestone, white; 30 percent coarse to medium-grained subrounded water-polished quartz sand. 20 percent coarse broken recrystallized shell fragments. 50 percent white calcareous matrix, well consolidated and hard. Black phosphate pebbles prominent. Ostracoda and Foraminifera rare, recrystallized. Ostracoda from the 73-88-foot intervals include: <i>Cytherelloides danvillensis</i> Howe var. <i>Bairdia</i> sp. B. <i>Cytherura</i> sp. B. <i>Trachyleberis</i> sp. A. <i>Cythereitta alexanderi</i> Howe and Chambers	273-307	Clay and sand, dark-gray; 40 percent fine to very fine-grained angular quartz sand. 60 percent gray micaceous clay matrix, unconsolidated but compact. Trace of dark-green fine-grained glauconite and broken shell fragments. Ostracoda and Foraminifera very rare.
Middle Eocene—lower part of Castle Hayne limestone		307-319	Clay and sand, dark-gray; Same as 273-307-foot interval. Ostracoda and Foraminifera very rare.
88-135	Calcareous sand and clay, light-gray; 75 percent	319-327	Calcareous sand, dark-gray; 75-percent fine-grained angular quartz sand. 25 percent gray calcareous clay matrix, indurated and well consolidated. Dark-green fine-grained glauconite prominent. Trace of broken shell fragments. No microfossils.
		327-335	Sand, dark-gray; 80 percent medium to fine-grained angular quartz sand. 15 percent gray clay matrix, unconsolidated. 5 percent dark-green glauconite. Trace of fine mica flakes and broken shell fragments. Ostracoda and Foraminifera rare.
		335-367	Sand, dark-gray; Same as 327-335-foot interval. Ostracoda and Foraminifera very rare.
		367-388	Sand and clay, dark-gray; 70 percent fine to very fine-grained angular quartz sand. 30 percent gray clay matrix, unconsolidated. Trace of dark-green glauconite and fine mica flakes. Ostracoda and Foraminifera rare.
		388-391	Sand, gray; 90 percent medium to fine-grained angular quartz sand. 10 percent gray clay matrix, unconsolidated. Broken and abraded shell fragments prominent. Trace of dark-green glauconite and black phosphate. Ostracoda and Foraminifera common. Ostracoda from the 273-388-foot intervals include: <i>Cytherelloidea swaini</i> Brown <i>Cytheridea</i> (<i>Haplocytheridea</i>) <i>ulrichi</i> Berry <i>Alatacythere alata atlantica</i> (Schmidt) <i>Trachyleberis communis</i> (Israelsky) <i>Platocythereis constatana angula</i> (Schmidt) <i>Velarocythere eikonata</i> Brown <i>Velarocythere cacumenata</i> Brown

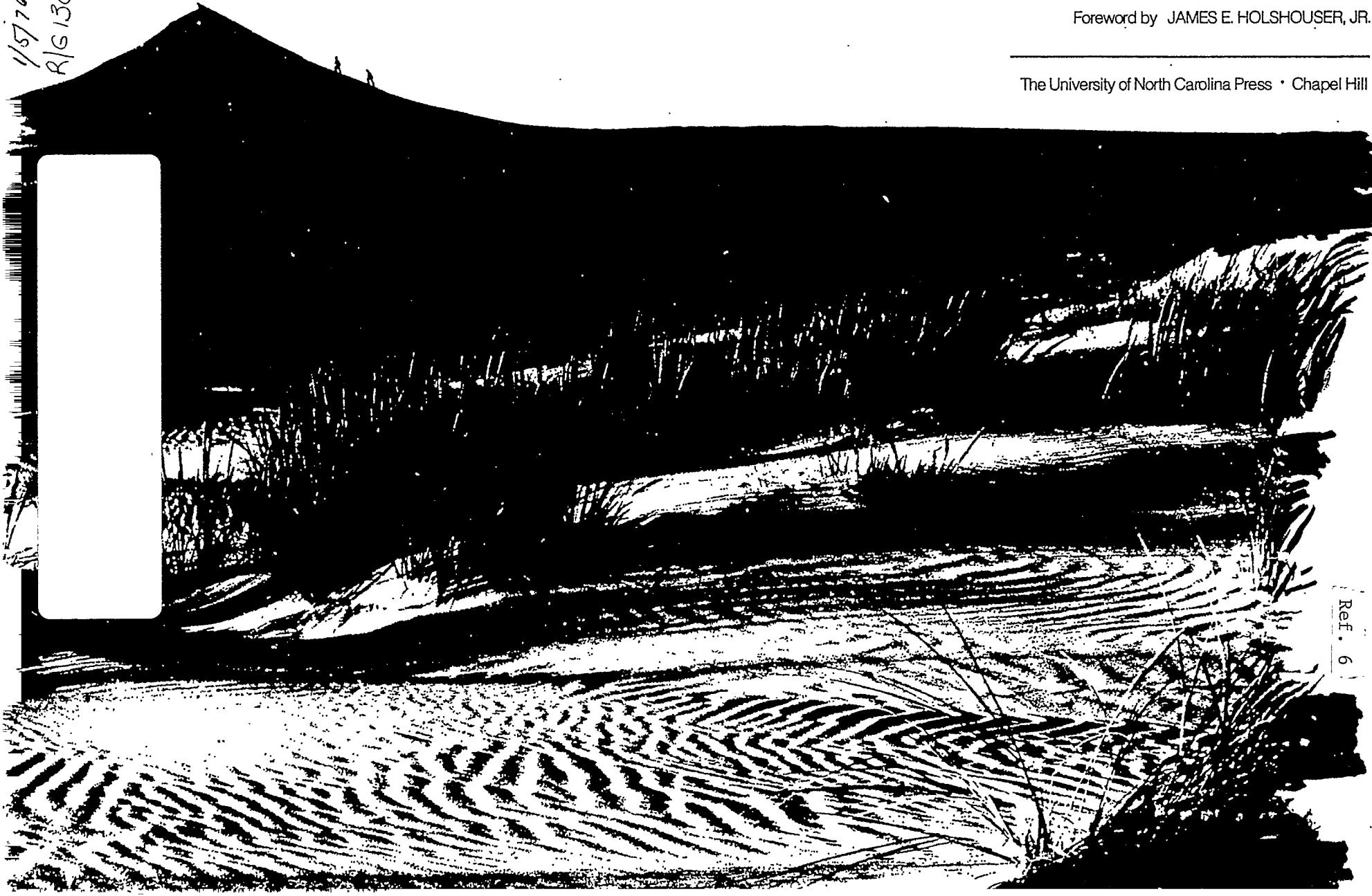
Remarks: No samples are available below a depth of 391 feet.

•

•

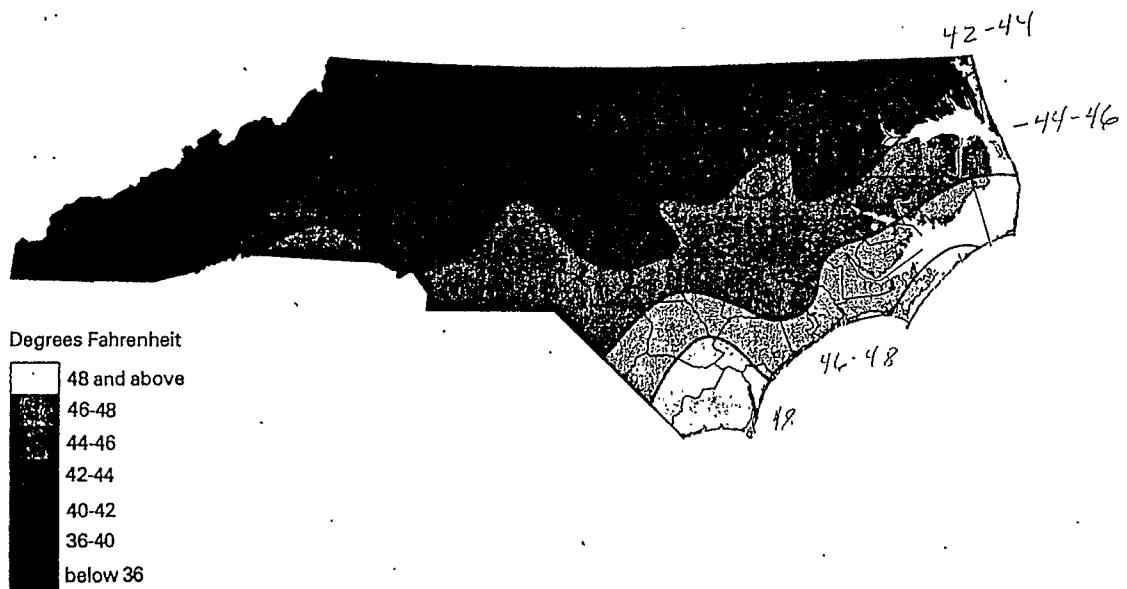
PORTRAIT OF A CHANGING SOUTHERN STATE

NORTH CAROLINA ATLAS


1/57/76 \$14.50 - Library
R/G 1300/N7/1975

PUBLIC HEALTH LIBRARY
DIVISION OF HEALTH SERVICES
P. O. BOX 2091
RALEIGH, NORTH CAROLINA 27602

Edited by JAMES W. CLAY
DOUGLAS M. ORR, JR.
ALFRED W. STUART


Foreword by JAMES E. HOLSHouser, JR.

The University of North Carolina Press • Chapel Hill

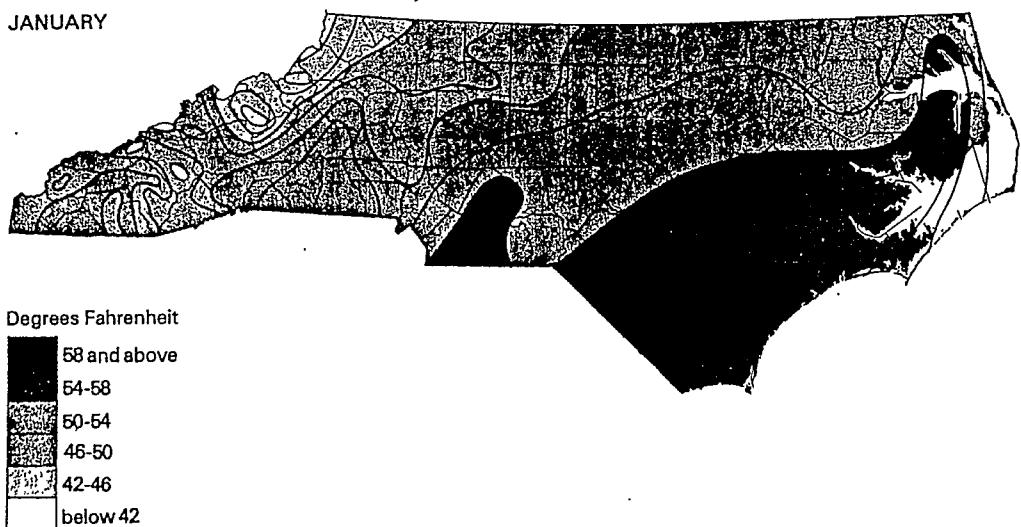

REF. 6

Figure 5.2. Average January Temperatures in N.C.

Source: U.S. Department of Commerce, *Weather and Climate in North Carolina, 1972*.

Figure 5.3. Mean Maximum Temperature in N.C.

Source: U.S. Department of Commerce, *Weather and Climate in North Carolina, 1972*.

Seasonal Changes in Climate

Winter The alternate passage of low- and high-pressure systems over the state during winter months results in changing weather conditions. Moisture and warmer temperatures are characteristically associated with frequently passing low-pressure cells. Lows are followed by polar highs, which bring lower temperatures and clear skies. However, even when under the influence of these polar highs, temperatures seldom fall below 10° F., and midday temperatures reach into the forties, making the winter season very tolerable by northern standards.

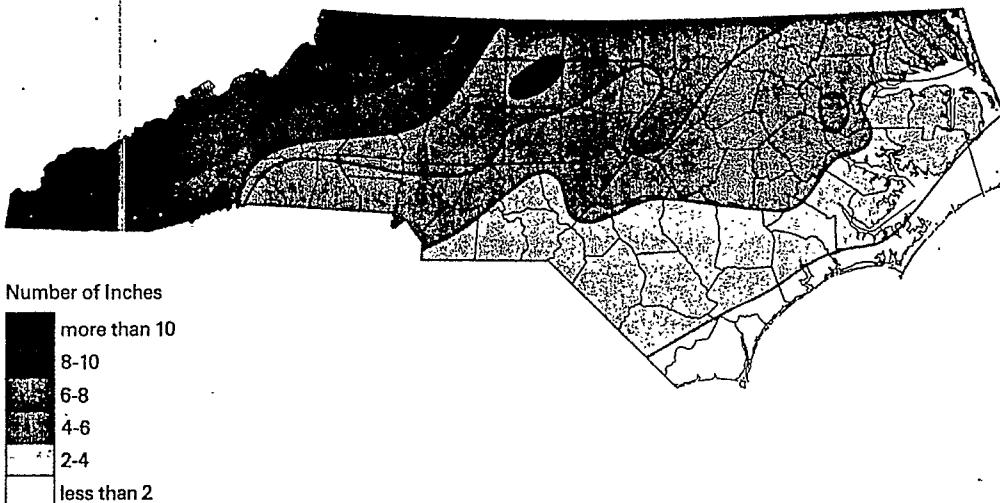
January average temperatures shown in Figure 5.2 illustrate the mildness of winters. Only at the highest elevations do temperatures average below freezing. The mean temperature for January at Mount Mitchell is 28.7° F., the lowest in the state. Yet, at Asheville, located on the lee side of the mountains, temperatures for January average 39.4° F.

Nowhere else in North Carolina is the local contrast in temperatures as great as in the western counties. Temperature contrasts are least where the climate is mildest. Hatteras, on the Outer Banks, has a January mean of 48.0° F., and only thirteen days each year when temperatures of 32° F. and below are recorded.

The tendency for January isotherms to parallel the coast shows the influence of the Atlantic Ocean. Wilmington, in southeastern North Carolina, the most subtropical area in the state, exemplifies the maritime effect. This coastal city has a January mean temperature of 47.8° F., and an average of only eight days during January when temperatures dip to 32° F. or less, as compared with eighteen days at Raleigh and nineteen at Asheville.

In the Piedmont, latitude is the primary control on temperature, and the isotherms maintain a zonal pattern. As might be expected, temperature averages lie between those exhibited by the surrounding regions. Charlotte has a mean January temperature of 42.3° F., Greensboro, 39.0° F., and Raleigh, 42.7° F.

However, whereas Asheville averages eighty-three days each year when temperatures drop below freezing, Winston-Salem has freezing temperatures eighty-eight days annually, and Greensboro has eighty-four days with freezing temperatures.


When high-pressure systems (anticyclones) dominate, clear to partly cloudy weather prevails. Receiving, on the average, 50 to 60 percent of total possible sunshine, North Carolina receives more hours of winter sunshine than do states to the north and to the immediate west. Sunshine is more prevalent in the southeast around Wilmington, and diminishes rapidly as the Mountains are approached. The Mountains receive about one-third less sunshine than does the rest of North Carolina.

Spring For many North Carolinians, this season is the most preferable of all. With the northward shifting of the noon sun, the storm track normal to North Carolina during the winter retreats northward and fewer and fewer cyclonic storms occur. Cold spells are less numerous and periods of high temperatures and balmy days become longer and more pronounced. Rainfall diminishes slightly in April, but increases toward the summer as cyclonic activity gives way to thundershowers and their heavy downpours. Although more precipitation is received in the state during May and June, there are fewer hours and days in which rainfall occurs, indicating a higher precipitation intensity.

Mean temperatures range from the fifties in April to the seventies in June for all places save those at high elevations. The days are marked by cool nights and warm afternoons with relative humidities at optimal levels for human comfort. As the daylight period lengthens, sunshine percentages and totals increase to their highest values for the year. For the eastern two-thirds of the state, sunshine during April, May, and June is received approximately 70 percent of the time and in amounts exceeding three hundred hours for the latter part of the season.

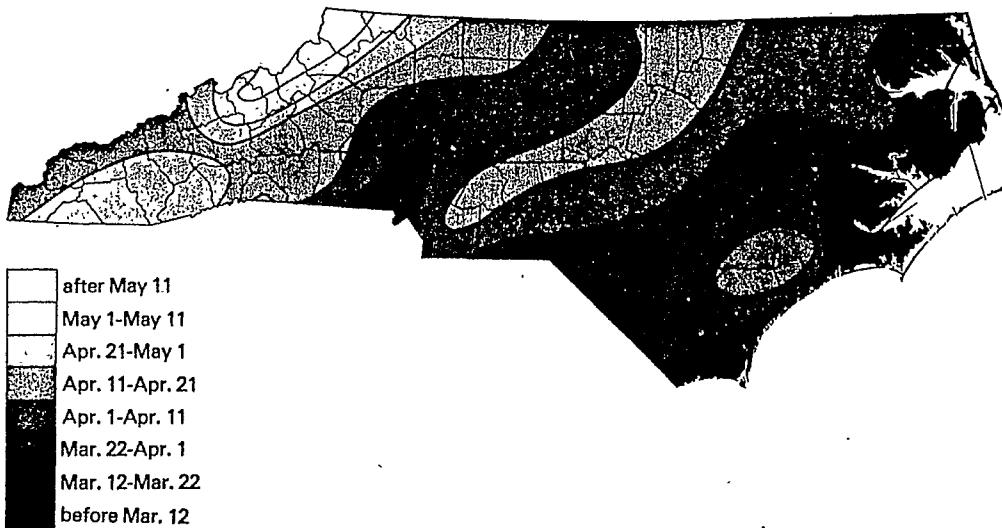

Average Date of the Last Freeze in Spring As illustrated by Figure 5.8, the beginning of the freeze-free season varies across the state from 1 March to 10 May, a difference in time of over two months. As expected, the milder climate along North Carolina's coast engenders early dates, whereas the more severe climate of the Mountains retards the start of the freeze-free period longer than elsewhere. In most areas of the Coastal Plain, the last spring freeze generally occurs by the first of April. The Piedmont has its last freezes between 1 and 10 April, about ten to fifteen days later than the Coastal Plain. In the Mountains, there is greater variation in mean dates for both the beginning and the end of the freeze season. Because air chills more quickly at higher elevations, and because cold air is denser than warm air, the cold air drains into the valleys where it is contained and continues to lose heat by radiation. The result of this process is that in certain Mountain areas some valleys are more often colder than their slopes at intermediate altitudes. Lying between the below-freezing temperatures of the valleys and the higher elevations are "verdant" or "thermal" belts.

Figure 5.7 Average Annual Snowfall in N.C.

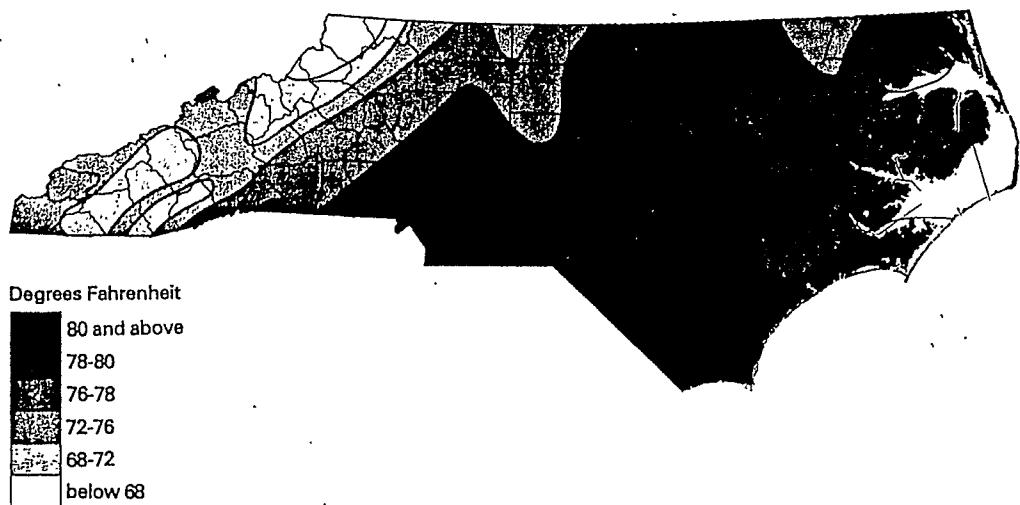

Source: U.S. Department of Commerce, *Climatological Summary*, 1966.

Figure 5.8. Average Date of Last Freezing Temperature in N.C.

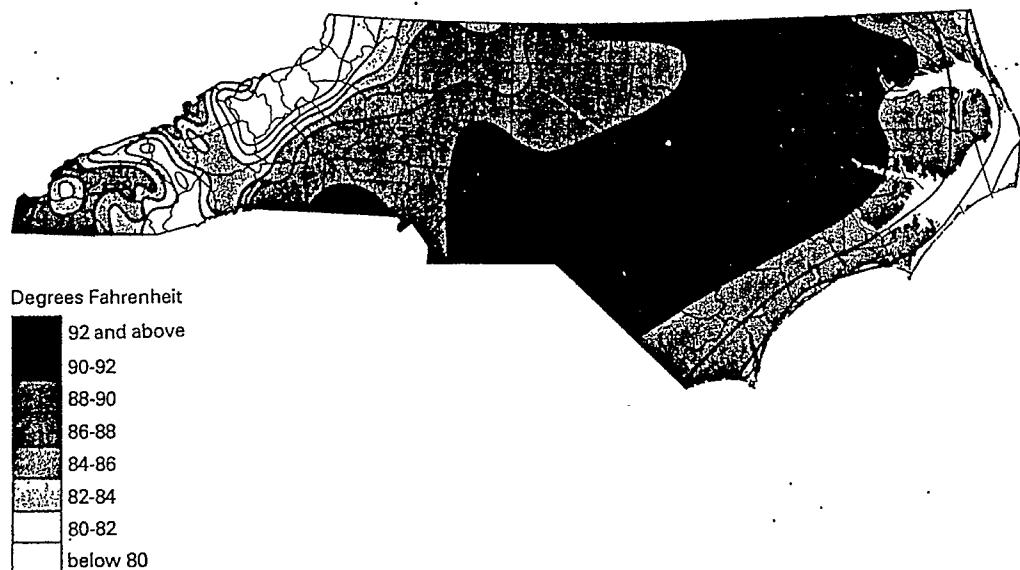

Source: U.S. Department of Commerce, *Weather and Climate in North Carolina*, 1972.

Figure 5.9. Average July Temperature in N.C.

Source: U.S. Department of Commerce, *Weather and Climate in North Carolina, 1972*.

Figure 5.10. Mean Maximum July Temperature in N.C.

Source: U.S. Department of Commerce, *Weather and Climate in North Carolina, 1972*.

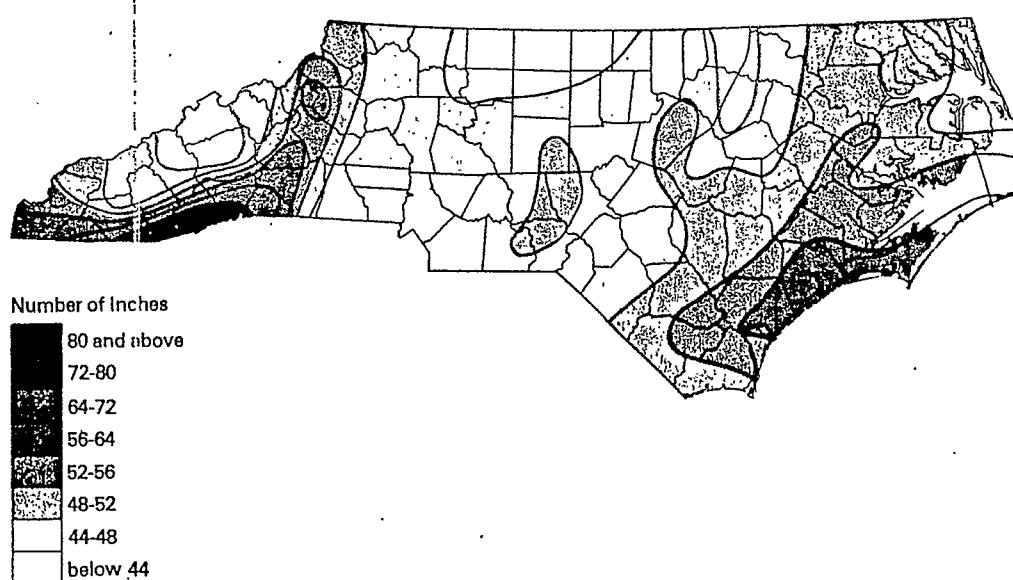
These strip-like regions have longer freeze-free seasons and thereby show earlier dates for the end of the freeze period than their surroundings. They support frost-susceptible vegetation long after the greenery has disappeared in nearby areas. Often in early winter or even in midwinter a contrasting belt of green flanked above and below by brown may be seen. These green belts are characteristically located along slopes that face the winter sun, are protected from cold northern winds, and have cold air drainage to lower valleys. The blossoming of dogwood and redbud moves across the state in a pattern similar to that of the end of the freeze season to blanket North Carolina with color and beauty.

Summer Summer is characterized by its high temperatures, high humidities, high amounts of rainfall, and high physiological stress. Except for the amelioration of these climatic elements in the Mountains, and the relief afforded by sea breezes along the coast, elsewhere in the state summer is a season of extremes. Mean monthly minimum temperatures for July and August are in the upper seventies and eighties and mean maximum temperatures reach into the nineties.

However, to quote a popular adage, "it's not the heat but the humidity," and North Carolina's temperatures in combination with the high water vapor amounts prevalent during the summer months are definitely uncomfortable. In addition, high sunshine percentages and a predominance of southerly winds tend to aggravate an already unpleasant climatic condition. Only the periodic passage of cool, dry air masses from the north and sea breezes in the coastal areas alleviate the discomfort of summer weather for North Carolina's low-lying counties.

July Average Temperatures The pattern of mean temperatures in July is similar to the pattern in January (Figure 5.9). However, in the Piedmont and Coastal Plain, isotherms are fewer in number and farther apart. In the Mountains, the reverse is true. The widespread isotherms east of the Mountains indicate that temperature averages across central and eastern North Carolina exhibit little contrast. From the western Piedmont to the coast, the difference in mean temperatures is only 4° F. Although the influence of the ocean is not evident in the arrangement of isotherms, the high temperatures of the Coastal Plain are made less severe by the cooling power of the sea breeze. Hatteras, on the Outer Banks, records a temperature of 90° F. on the average of only one day each year, while Wilmington, a short distance from the coast, has an occurrence of 90° F. temperatures about twenty-four days annually. In contrast with these locations, Raleigh and Winston-Salem mean temperatures for July are slightly lower, but the average number of days on which a temperature of 90° F. or above is experienced increases to more than forty.

Autumn is the driest season of the year and rainfall amounts drop below 3 inches throughout central and eastern North Carolina during October and November. Cyclonic activity increases as thunderstorms become less frequent until by late November they seldom occur.


As illustrated in Figure 5.14, freezes begin early in October in the Mountains and slowly move eastward toward the coast. In early December, the freeze-free season reluctantly comes to a close in the Wilmington-Southport area. Deciduous trees begin their dormancy period and the color of the state gradually changes from the quiet greens of summer to the fiery reds and brilliant yellows of fall. By late autumn the highlands, now a mottled brown and green, show an occasional sprinkling of white as temperatures in the Mountains fall below freezing and the possibility of snow increases. However, in the Piedmont and Coastal Plain, tennis, sailing, and picnicking, for example, continue into November and football games played late in the season are often attended by fans dressed in warm-season attire.

Annual Precipitation and Humidity

Although a considerable variation in the distribution of rainfall exists throughout the state, everywhere precipitation is high (Figure 5.15). In the Coastal Plain, rainfall totals average from 44 to 55 inches; the highest amounts were received at the Outer Banks. Across the Piedmont, yearly rainfall averages range from 43 to 48 inches, with the northern and southern sectors having the lower totals. The greatest variability in rainfall distribution is found in the Mountains. Here, south-facing slopes along the North Carolina-South Carolina border receive as much as 80 inches of precipitation each year. Nearby, Asheville, lying in a sheltered valley, records only 37 inches, the lowest rainfall average reported in the state. More commonly, average annual precipitation in the Mountains ranges from 44 to 58 inches. For the state as a whole, an average total of 50 inches is representative.

The distribution of rainfall throughout the year is reasonably uniform. Although there are no pronounced wet and dry seasons, a profile of average annual precipitation indicates a bimodal distribution, i.e., two periods of higher rainfall separated by two periods during the year when rainfall amounts are lower than the norm. Generally, the highest precipitation totals are associated with the summer months. In the fall, the season of the least rainfall, the lowest yearly totals usually occur in October or November. Precipitation increases slightly during the winter season and then decreases to a secondary low in April. This precipitation regime is common to the state and varies only slightly from place to place.

Figure 5.15. Average Annual Precipitation in N.C.

Source: U.S. Department of Commerce, *Weather and Climate in North Carolina, 1972*.

Although rainfall is heaviest in the summer, evaporation and transpiration losses are also great. Consequently, the summer season is deficient in its supply of soil moisture and irrigation may be required to sustain crop needs.

Although it is considered to be a wet state, North Carolina nevertheless has its occasional "bout with drought." Recently, the Piedmont and Inner Coastal Plain suffered through an especially severe drought. In 1968, negative rainfall departures amounting to as much as 26 inches were computed by individual stations within this area. On the other hand, 1972 proved to be an abnormally wet year. During that year, Raleigh, which has an average annual precipitation of 46.35 inches, experienced a total rainfall of 51.74 inches. Raleigh's weather records may be used to illustrate the variations in yearly precipitation amounts. In the capital city, annual totals have varied from a low of 30 inches in 1933 to a high of 64 inches in 1936. On a monthly basis, rainfall variation for July has ranged from 12.36 inches in 1931 to as little as 0.38 inches in 1953. Yet precipitation variability in North Carolina is moderate compared with those states where rainfall totals are significantly less and consequently precipitation patterns and regimes are more unpredictable.

Average Number of Days with 0.01 Inches of Precipitation or More

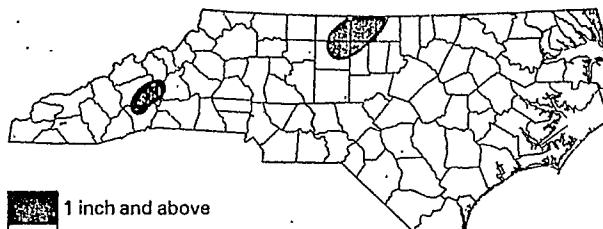
Figure 5.16 shows the pattern of days with measurable precipitation in North Carolina. The Mountains have the greatest number of days with measurable precipitation, averaging 10 to 20 more rainy days per year than the coast and 20 to 30 days more than the southern Piedmont. In the northwest corner of the state precipitation occurs 4 out of every 10 days. By contrast, the sandhills in the Southern Piedmont experiences precipitation on only 30 percent of the days. In fact, a "tongue" of fewer rainy days penetrates the state from south to north, through North Carolina's central counties. For the state as a whole, 125 days with measurable precipitation is a representative figure.

Water Balance

The "wetness" or "dryness" of any region is mirrored by its natural vegetation. Indigenous plant life is an indicator of a region's precipitation effectiveness and its capacity to support plant growth. The minimal moisture requirements of plant communities are quite specific, and *in situ* vegetation reflects the amounts of water annually and seasonally available for its use. As the size of a bank account depends upon the balance between deposits and withdrawals, so precipitation effectiveness

soil moisture requirement is satisfied, additional precipitation will drain to the underground water table or run off the land as surplus water.

Figure 5.18 provides the water balance deficits for the state and shows that everywhere except for the Asheville area and the northern Piedmont, the annual water deficit is less than one inch. By contrast, Figure 5.19 gives water balance surpluses. Being a wet state, North Carolina's water budget indicates surpluses exceeding deficits by large amounts. While most of the Piedmont and Coastal Plain have surplus water up to 15 inches, the Outer Banks and the Mountains show surpluses above 15 inches. In the southwest corner of the state, water surpluses amount to as much as 30 inches.


Mean annual evaporation for North Carolina is shown in Figure 5.20. Evaporation rates and totals are related to temperature, wind velocity, and relative humidity. Where temperatures are highest and humidities lowest, evaporation intensities will be greatest. Since temperatures throughout the Coastal Plain and the Piedmont are highest for the state and since humidity percentages are greater in the vicinity of the ocean, evaporation totals are lower in the Mountains and along the coast, and highest in the southern Piedmont and Coastal Plain. A comparison of the maps showing precipitation, evaporation, water surplus, and water deficit will provide the reader with a fairly complete picture of North Carolina's water balance.

Winds and Storms

Three types of storms and their associated winds are common to North Carolina: cyclonic and convectional thunderstorms, hurricanes, and tornadoes. These storms are integral parts of the state's climatic pattern. In analyzing the importance of winds, direction and speed are major considerations.

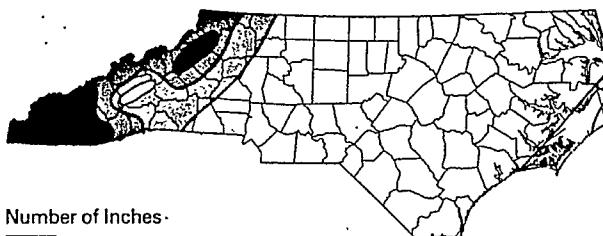

Although prevailing winds (winds that persist in blowing from one direction more so than any other) characterize given geographical areas, wind direction changes frequently. A northwesterly wind (coming from the northwest) will be, relatively speaking, a cooling and drying wind, whereas a southeasterly wind will bring warm, moist air to the state. The passage of cyclones and anticyclones with their characteristic wind patterns will change the wind's direction so that it may come across North Carolina from any point of the compass.

Figure 5.18. Water Balance Deficit In N.C.

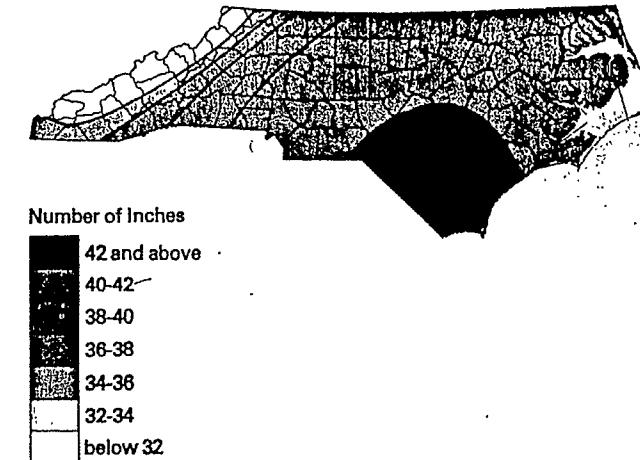
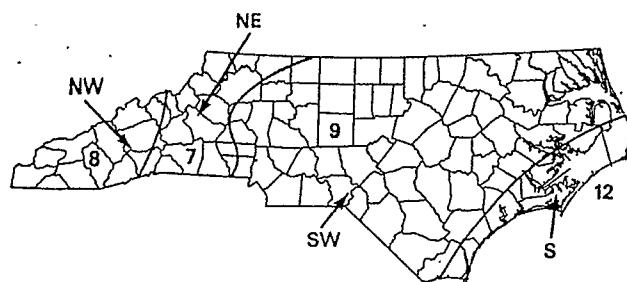

Source: U.S. Department of Commerce, *Climatic Summary of the U.S.*, 1972.

Figure 5.19. Water Balance Surplus in N.C.

Source: U.S. Department of Commerce, *Climatic Summary of the U.S.*, 1972.

Figure 5.20. Mean Annual Evaporation in N.C.



Source: U.S. Department of Commerce, *Climatic Summary of the U.S.*, 1972.

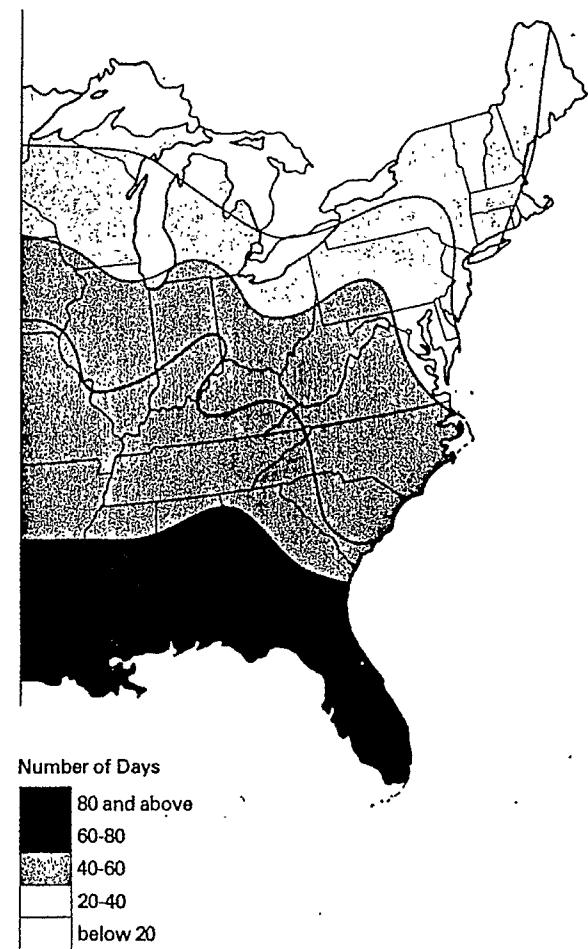
The velocity of the wind is relevant to ventilation of air pollutants, evaporation rates, and thus cooling and chilling indexes. On those occasions when winds reach gale force and higher, their velocities are of singular importance because of their destructive capabilities. Damaging winds are usually associated with infrequent hurricanes and tornadoes and, at times, with severe thunderstorms.

The prevailing winds and mean wind speeds averaged for the year are given in Figure 5.21. For the eastern two-thirds of the state, winds blow most frequently from the southwest and south. Throughout the Mountains and the western Piedmont, winds prevail from northerly directions. This annual pattern of prevailing winds persists for most months of the year except September and October when winds are dominantly from the northeast. During these months, the clockwise flow of air from seasonal anticyclones lying poleward of North Carolina, and the counterclockwise winds associated with an increased number of offshore storms cause northeasterlies to prevail across the state.

Figure 5.21. Prevailing Winds and Mean Annual Wind Speed in N.C.

Source: U.S. Department of Commerce, *Climatic Summary of the U.S.*, 1972.

Note: Wind speeds are noted in miles per hour.


Wind speeds have been averaged for each zone of prevailing winds. Winds tend to diminish in speed westward from the coast where sea breezes and offshore storms contribute to velocities that average twelve miles per hour. Throughout the Inner Coastal Plain and the Piedmont, the mean wind speed is nine miles per hour, and in the western counties, representative wind speeds are seven and eight miles per hour. On a daily basis, wind velocities are lowest before dawn and highest around midafternoon. Seasonally, winter, with greater temperature and pressure contrasts, shows the most rapid air movement and summer is the time of lowest wind speeds.

Thunderstorms Thunderstorms are vertically developed storm systems that involve lightning and thunder. Produced by instability in the atmosphere, these storms are sustained by the conversion of water vapor into rain and hail, which causes the release of enormous amounts of energy. This energy results in vigorous updrafts of rapidly moving air. The intensity and turbulence of an individual thunderstorm is related to the degree of atmospheric instability and the supply of latent energy released by the condensing of water vapor. In structure, the typical thunderstorm is a collection of convective cells each averaging a mile or more in diameter. A cell is comprised of columns of rapidly rising air separated and counterbalanced by downdrafts of slower moving air. Associated with thunderstorms and their bulbous facade are heavy downpours of rain, hail, gusty, and squally winds, and of course, lightning and thunder.

Because thunderstorm development and frequency is enhanced by (1) atmospheric instability that is linked to high surface temperatures, (2) atmospheric moisture that supplies the latent energy requirements, and (3) some triggering device to start the convection process, thunderstorms occur more frequently in regions of warm temperatures and high humidities. North Carolina's climate is conducive to thunderstorm development and the state experiences violent local storms forty to fifty days each year. For the United States, Florida and the Gulf Coast lead in the number of days with thunderstorms. Here, seventy to ninety days per year with thunderstorms is normal. In the northern states and along the West Coast, thunderstorm activity drops off because of colder temperatures over land and coastal waters. North Carolina's pattern of thunderstorm activity shows fewest storms off the northeast coast where coastal waters also are cooler. Inland, thunderstorms are more frequent, increasing to fifty days as the Mountains are approached. In the Mountains, the higher frequency of storm activity (all types) and the triggering supplied by mountain and frontal slopes results in the most thunderous area to be found in the state (Figure 5.22).

Hurricanes In the latter half of the year, the United States is visited by hurricanes. Originating over tropical oceans as small cyclones, under favorable conditions hurricanes become large, intense storm systems. Their winds exceed seventy-five miles per hour and spiral counterclockwise around an "eye" of very low pressure. Sustained by the ocean that breeds them, these storms are driven by the heat released from condensing water vapor. Covering tens of thousands of square miles, hurricanes move slowly and deliberately, at speeds between fifteen and fifty miles per hour, delivering prodigious amounts of precipitation to areas over which they pass. Moving out of the tropics, hurricanes of the Atlantic Ocean generally invade the Gulf of Mexico, or veer northward toward the middle latitudes, occasionally penetrating the continent, or skirting the coastline as far north as New England. Hurricanes are sea monsters and diminish in intensity as they move inland and away from their source of energy. Although capable of great destruction, hurricanes nevertheless benefit the southeastern states to a substantial degree. As the eastern states are subject to periodic summer droughts, the vast amounts of water delivered to this region by these giant tropical storms have served more than once to alleviate or terminate the disastrous effects of drought conditions. However, hurricanes are killer storms, and their long-range benefits are obscured by the more obvious death, destruction, and damage accompanying them. On the average, the Atlantic Ocean generates six hurricanes a

Figure 5.22. Average Number of Days with Thunderstorms

Source: Glenn T. Trewartha, Arthur H. Robinson, and Edwin H. Hammond, eds., *Elements of Geography*, 5th ed. (New York: McGraw-Hill Book Co., 1967).

year, but as many as eleven in one year have been observed. North Carolina has experienced twelve especially disastrous hurricanes since 1900. Cape Hatteras, extending as it does into the ocean, is affected by hurricanes more than any other area of North Carolina (Figure 5.23). Its low-lying sandy surface is especially vulnerable to the combined effects of high winds, high tides, and flooding associated with the storms.

Uncontrolled Hazardous Waste Site Ranking System

A Users Manual

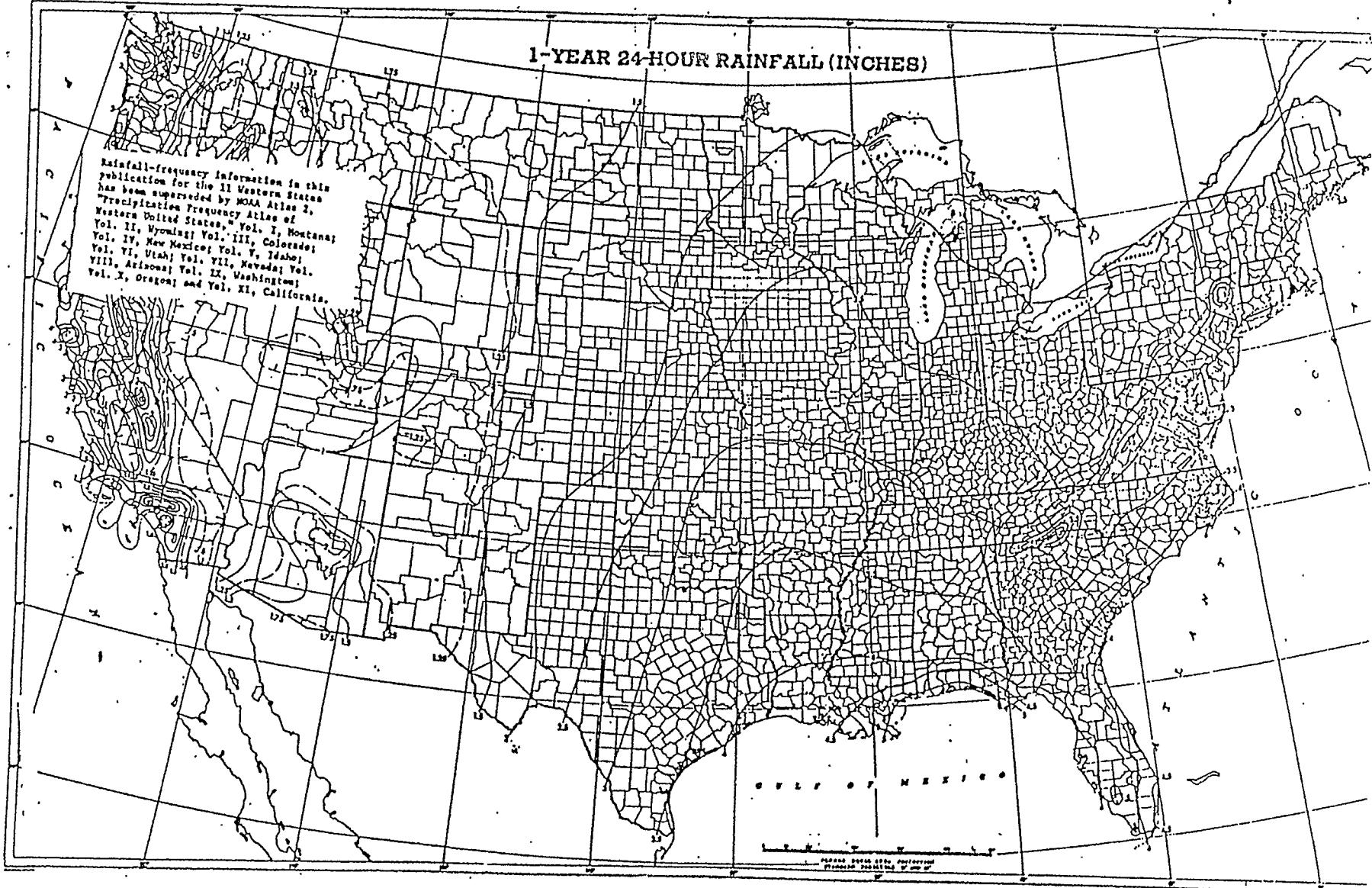
Kris W. Barrett
S. Steven Chang
Stuart A. Haus
Andrew M. Platt

August 1982

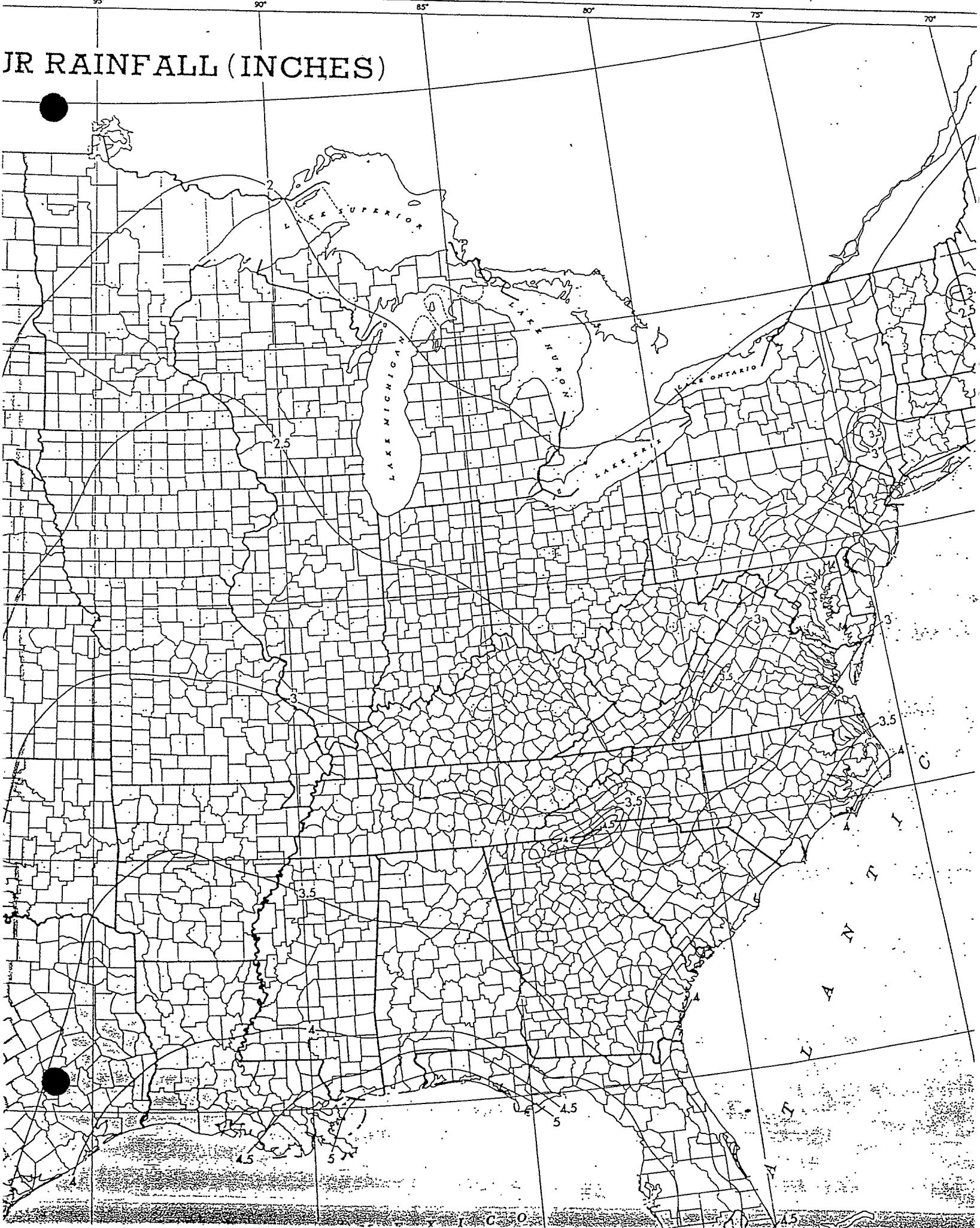
MTR-82W111

SPONSOR:

U.S. Environmental Protection Agency


CONTRACT NO.:

68-01-6278


The MITRE Corporation
Metrek Division
1820 Dolley Madison Boulevard
McLean, Virginia 22102

1-YEAR 24-HOUR RAINFALL (INCHES)

Rainfall-frequency information in this publication for the 11 Western States has been superseded by NOAA Atlas 2, "Precipitation Frequency Atlas of the United States," Vol. I, Montana; Vol. II, Wyoming; Vol. III, Colorado; Vol. IV, New Mexico; Vol. V, Idaho; Vol. VI, Nevada; Vol. VII, Arizona; Vol. VIII, Utah; Vol. IX, Washington; Vol. X, Oregon; and Vol. XI, California.

JR RAINFALL (INCHES)

PUBLIC HEALTH DIVISION
DIVISION OF HEALTH SERVICES
P. O. BOX 2091
RALEIGH, NORTH CAROLINA 27602

Fifth Edition, 1984

Ref. 8

North Carolina State Government

Statistical Abstract

Research and Planning Services
Office of State Budget and Management

552
1809
1984

Table 178

EMISSIONS INVENTORY SUMMARY (IN TONS)
FROM POINT AND AREA SOURCES, BY COUNTY
1979

County	Particulates		Sulfur Dioxide		Nitrogen Oxides		Volatile Organic Compounds and Hydrocarbons		Carbon Monoxide	
	Area Sources	Point Sources	Area Sources	Point Sources	Area Sources	Point Sources	Area Sources	Point Sources	Area Sources	Point Sources
State Total	553,662	222,263	43,247	731,157	334,896	290,035	560,734	114,695	2,416,603	130,670
Alamance	7,718	868	818	1,428	5,890	266	11,748	3	45,608	21
Alexander	2,150	633	173	128	1,150	32	1,634	525	6,010	2
Alleghany	2,168	-	63	-	611	-	924	-	3,931	-
Anson	2,537	201	183	2	1,618	16	2,700	92	10,909	4
Ashe	5,022	422	127	9	1,127	74	1,713	231	7,533	12
Avoyelles	1,705	78	89	83	799	50	797	8	4,116	7
Barnard	5,234	1,072	207	21,236	2,731	1,145	4,277	23	19,654	51
Bartow	2,227	1,608	144	2,616	1,903	312	2,107	63	11,434	101
Bladen	3,665	135	191	551	1,235	29	2,731	184	12,777	8
Brunswick	3,293	913	204	16,616	2,018	3,418	3,285	29,359	16,967	10,845
Buncombe	15,826	4,523	1,036	101,654	8,073	34,108	17,219	536	66,409	2,245
Burke	3,906	568	495	1,520	4,066	671	6,339	1,486	27,446	109
Cabarrus	6,136	765	581	2,638	4,775	1,126	8,704	998	45,995	94
Caldwell	6,070	3,850	581	303	3,408	425	4,897	5,600	19,740	69
Condon	707	3	47	-	517	-	825	-	4,021	-
Carteret	1,949	8	270	81	2,269	16	5,080	-	20,446	2
Caswell	2,138	899	124	-	1,160	-	1,516	-	8,438	-
Catawba	7,537	19,814	1,345	75,328	7,829	33,880	13,934	3,016	40,662	1,932
Chatham	4,994	9,679	349	12,208	2,464	5,352	3,299	756	15,675	609
Cherokee	3,332	50	104	1	1,050	6	1,730	-	7,010	1
Chowan	747	54	93	325	795	54	1,403	227	6,347	4
Clay	2,096	-	71	-	1,200	-	2,076	-	17,224	-
Cleveland	6,160	365	945	405	4,030	929	6,461	-	15,717	46
Columbus	5,840	1,406	351	7,735	3,216	2,082	4,170	412	20,162	12,427
Craven	6,201	3,598	399	6,706	3,677	2,614	6,682	1,048	32,514	7,085
Cumberland	17,810	586	1,120	2,927	9,493	681	17,624	834	90,631	74
Currin	1,100	159	700	-	1,200	-	1,400	-	4,900	-
Dare	605	5	104	240	832	71	3,926	2	14,035	12
Davidson	10,207	395	756	998	6,301	629	10,320	2,470	44,355	144
Davie	2,233	428	149	66	1,259	31	5,206	181	8,938	5
Duplin	4,789	105	273	763	2,949	154	3,668	41	18,942	13
Durham	10,624	836	778	880	6,398	194	12,903	703	58,610	15
Edgecombe	3,302	3,041	491	407	4,010	81	4,720	1,367	21,017	17
Forsyth	17,838	528	2,173	5,837	16,754	2,152	24,192	21,408	95,712	186
Franklin	2,830	-	181	-	1,771	-	3,165	83	13,206	-
Gaston	10,171	7,566	1,145	62,730	8,842	29,610	15,598	687	61,159	1,789
Gates	1,298	-	69	-	729	-	740	-	4,277	-
Graham	842	44	35	60	364	19	479	3	2,211	4
Granville	5,457	78	206	720	2,277	1,028	4,013	515	19,218	188
Greene	1,329	11	87	-	999	-	1,320	-	7,063	-
Guildford	33,493	2,702	2,769	3,330	20,142	989	31,063	14,057	139,198	495
Hallifax	5,044	1,206	315	9,556	2,903	2,485	5,316	329	25,552	10,410
Harnett	5,575	143	306	765	3,268	169	4,489	5	24,530	14
Haywood	4,414	682	285	9,768	2,528	4,703	5,531	49	17,166	43,964
Henderson	6,642	308	370	2	3,040	28	5,703	3	21,248	7
Hertford	2,085	885	152	276	1,410	2,615	2,278	54	11,197	111
Hoke	897	31	122	193	979	54	1,824	-	6,977	5
Hyde	828	148	99	-	814	-	3,074	-	11,064	-
Iredell	10,157	2,169	729	916	4,958	665	9,541	1,025	37,946	114
Jackson	4,694	99	153	5	2,007	30	3,203	6	18,948	6
Johnston	7,755	1,671	429	138	4,069	31	5,726	718	24,989	3
Jones	995	-	70	-	862	-	5,622	-	5,573	-
Lee	1,936	81	329	75	2,459	25	4,465	274	15,602	314
Lenoir	32,597	451	268	2,979	2,028	1,094	4,523	15	22,470	282
Lincoln	2,892	116	275	714	2,126	173	3,292	167	11,732	13
McDowell	2,645	165	179	1,042	1,690	392	2,698	230	12,728	44
Mecklenburg	3,282	16	263	-	2,016	-	3,091	-	16,200	-
Madison	3,444	1	160	14	1,165	7	1,442	2	7,027	2
Martin	3,523	3,738	93	18,647	863	7,719	1,035	1,093	5,228	12,789
Mecklenburg	20,607	3,335	3,503	3,631	24,745	813	36,601	5,707	196,662	1,738
Mitchell	1,591	124	106	52	780	13	745	520	4,161	1
Montgomery	1,949	365	190	26	1,465	31	3,339	13	9,172	23
Moore	4,418	97	265	71	2,464	46	4,295	60	18,219	9
Nash	5,322	559	594	1,203	4,373	323	8,567	309	35,371	30
New Hanover	4,042	4,675	1,080	35,483	5,411	13,157	10,379	8,344	40,872	855
Northampton	2,193	232	144	627	1,607	200	1,999	150	10,632	43
Onslow	6,007	39	485	48	4,326	10	7,447	57	25,260	31
Oreango	6,169	99	325	1,194	2,929	613	4,146	20,470	12,465	22
Pamlico	995	-	91	-	773	-	1,639	-	6,256	-
Pasquotank	1,508	432	166	140	1,220	211	2,433	30	11,082	40
Pender	2,248	-	130	-	1,628	-	2,232	-	12,492	-
Pergolas	1,004	21	76	-	755	-	1,065	-	5,242	-
Person	4,221	15,859	195	73,710	1,533	34,504	2,968	593	11,446	1,923
Pitt	8,053	390	423	1,580	3,970	312	6,656	30	37,356	26
Polk	1,917	37	82	34	703	56	970	4,441	1	-
Randolph	11,786	83	621	64	3,543	31	9,203	377	27,791	-
Richmond	2,983	21	485	30	2,663	8	4,786	-	17,374	80
Robeson	9,120	452	621	6,434	5,365	2,634	8,989	631	41,534	154
Rockingham	10,052	34,193	586	7,270	4,726	3,390	8,993	251	36,543	199
Rowan	7,590	3,48	698	10,791	5,126	4,909	9,062	139	27,959	272
Rutherford	6,778	2,994	331	37,872	2,930	14,013	4,912	302	21,356	787
Sampson	9,688	101	349	705	3,321	136	4,839	95	23,036	11
Scotland	1,780	272	171	585	1,863	191	3,385	2,456	12,465	22
Stanly	5,915	1,269	321	2,307	2,745	305	3,764	130	17,420	11,436
Stokes	4,908	33,172	186	146,408	1,627	63,072	2,138	1,052	10,278	3,504
Surry	8,047	1,285	521	1,413	3,908	445	6,333	154	23,729	66
Swain	988	182	53	-	532	-	6,039	-	3,200	-
Transylvania	2,181	31	116	807	935	201	1,968	3	6,691	12
Tyrrell	674	3	70	-	627	-	1,139	-	4,752	-
Union	6,003	896	534	182	4,126	72	6,294	784	23,997	7
Yancey	2,452	267	280	66	2,193	33	3,913	-	-	-
Yake	25,540	214	1,839	26	16,075	119	26,884	50	16,660	1
Warren	2,761	-	108	-	1,183	-	1,584	891	144,690	699
Washington	1,494	930	622	26	1,397	173	2,201	189	8,294	-
Watauga	4,143	47	176	505	1,509	140	2,268	33	7,464	39
Wayne	6,682	29,890	564	21,769	5,475	6,828	9,922	144	37,706	1,619
Wilkes	9,765	1,081	415	1,074	3,589	327	3,732	189	17,403	41
Wilson	4,374	202	539	86	4,449	18	8,416	16	20,205	1
Yadkin	5,292	10	189	18	1,718	4	2,171	-	11,255	1
Yancey	1,031	13	95	102	771	19	1,023	-	5,368	2

SOURCE: North Carolina Department of Natural Resources and Community Development, Division of Environmental Management.

Table 17

NORTH CAROLINA POPULATION OF INCORPORATED PLACES AND THEIR PERCENTAGE GROWTH
1970 TO 1980

CITY	County Location	1970 Census	1980 Census	Percentage Change	CITY	County Location	1970 Census	1980 Census	Percentage Change
Aberdeen	Moore	1,592	1,945	22.2%	Edenton	Chowan	4,956	5,357	8.1
Ahoskie	Hertford	5,105	4,887	-4.3	Elizabeth City	Camden, Pasquotank	14,381	14,004	-2.6
Alamance	Alamance	NA	320	NA	Elizabethtown	Bladen	1,418	3,551	150.4
Albemarle	Stanly	11,126	15,110	35.8	Elk Park	Avery	503	535	6.4
Alexander Mills	Rutherford	988	643	-34.9	Elkin	Surry, Wilkes	2,899	2,858	-1.4
Alliance	Pamlico	577	616	6.8	Ellenboro	Rutherford	465	560	20.4
Andrews	Cherokee	1,384	1,621	17.1	Elizabethtown	Richmond	913	1,415	55.0
Angier	Harnett	1,431	1,709	19.4	Elm City	Wilson	1,201	1,561	30.0
Ansonville	Anson	694	794	14.4	Elon College	Alamance	2,150	2,873	33.6
Apex	Wake	2,234	2,847	27.4	Emerald Isle	Carteret	122	865	609.0
Arapahoe	Pamlico	212	467	120.3	Enfield	Halifax	3,272	2,995	-8.5
Archdale	Guilford, Randolph	4,874	5,745	17.9	Erwin	Harnett	2,852	2,828	-0.8
Arlington	Yadkin	711	872	22.6	Eureka	Wayne	263	303	15.2
Asheboro	Randolph	10,797	15,252	41.3	Everetts	Martin	198	213	7.6
Asheville	Buncombe	57,929	53,583	-7.5	Fair Bluff	Columbus	1,039	1,095	5.4
Ashevillle	Bertie	247	227	-8.1	Fairmont	Robeson	2,827	2,658	-6.0
Atkinson	Pender	325	298	-8.3	Faison	Duplin	598	636	6.4
Atlantic	Carteret	NA	NA	NA	Faith	Rowan	506	552	9.1
Atlantic Beach	Carteret	300	941	213.7	Falcon	Cumberland, Sampson	357	339	-5.0
Aulander	Bertie	947	1,214	28.2	Falkland	Pitt	130	118	-9.2
Aurora	Beaufort	620	698	12.6	Fallston	Cleveland	301	614	104.0
Autryville	Sampson	213	228	35.2	Farmville	Pitt	4,424	4,707	6.4
Ayden	Pitt	3,450	4,361	26.4	Fayetteville	Cumberland	53,510	59,507	11.2
Bailey	Nash	724	685	-5.4	Forest City	Rutherford	7,179	7,688	7.1
Bakersville	Mitchell	409	373	-8.8	Fountain	Pitt	434	424	-2.3
Banner Elk	Avery	754	1,087	44.2	Four Oaks	Johnston	1,057	1,049	-0.8
Bath	Beaufort	231	207	-10.4	Foxfire	Moore	9	153	1,600.0
Battleboro	Edgcombe, Nash	562	632	12.5	Franklin	Macon	2,338	2,640	13.0
Bayboro	Pamlico	665	759	14.1	Franklin	Franklin	1,459	1,394	-4.5
Bear Grass	Martin	99	82	-17.2	Franklinville	Randolph	794	607	-23.6
Beaufort	Carteret	3,368	3,826	13.6	Fremont	Wayne	1,596	1,736	8.8
Belhaven	Beaufort	2,259	2,430	7.6	Fuquay-Varina	Wake	3,576	3,110	-13.0
Belmont	Gaston	5,054	4,607	-8.8	Garland	Sampson	656	885	34.9
Belville	Brunswick	59	102	72.9	Garner	Wake	4,923	10,073	104.6
Belwood	Cleveland	736	613	-16.7	Garysburg	Northampton	231	1,434	520.8
Benson	Johnson	2,267	2,792	23.2	Gaston	Northampton	1,105	883	-20.1
Bessemer City	Gaston	4,991	4,787	-4.1	Gastonia	Gaston	47,322	47,333	0.0
Bethel	Pitt	1,514	1,825	20.5	Gatesville	Gates	338	363	7.4
Bolaville	Duplin	1,156	1,060	-8.3	Germanton	Stokes	NA	NA	NA
Biltmore Forest	Buncombe	1,298	1,499	15.5	Gibson	Scotland	502	533	6.2
Biscoe	Montgomery	1,244	1,334	7.2	Gibsonville	Alamance, Guilford	2,019	2,865	41.9
Black Creek	Wilson	449	523	16.5	Glen Alpine	Burke	797	645	-19.1
Black Mountain	Buncombe	3,204	4,083	27.4	Godwin	Cumberland	129	233	80.6
Bladenboro	Bladen	783	1,428	82.4	Gold Point	Martin	108	NA	NA
Blowing Rock	Caldwell, Watauga	801	1,337	66.9	Goldsboro	Wayne	26,960	31,871	18.2
Bolling Spring Lakes	Brunswick	245	998	307.8	Goldston	Chatham	364	353	-3.0
Bolling Springs	Cleveland	2,284	2,381	4.2	Graham	Alamance	8,172	8,674	6.1
Bolivia	Brunswick	185	252	36.2	Granger	Lenoir	NA	NA	NA
Bolton	Columbus	554	563	5.4	Granite Falls	Caldwell	2,388	2,580	8.0
Boone	Watauga	8,754	10,191	16.4	Granite Quarry	Rowan	1,344	1,294	-3.7
Boonville	Yadkin	687	1,028	49.6	Greeneviers	Duplin	424	477	12.5
Bostic	Rutherford	289	476	64.7	Greensboro	Guilford	144,076	155,642	8.0
Brevard	Transylvania	5,243	5,323	1.5	Greenville	Pitt	29,063	35,740	23.0
Bridgeton	Craven	520	461	-11.3	Gritton	Lenoir, Pitt	1,860	2,179	17.2
Broadway	Lee	694	908	30.8	Grimesland	Pitt	394	453	15.0
Brookford	Catawba	590	467	-20.8	Grover	Cleveland	555	597	7.6
Brunswick	Columbus	206	223	8.3	Halifax	Halifax	335	253	-24.5
Bryson City	Swain	1,290	1,556	20.6	Hamilton	Martin	579	638	10.2
Bunn	Franklin	284	505	77.8	Hamlet	Richmond	4,627	4,720	2.0
Burgaw	Pender	1,744	1,586	-9.1	Harmony	Iredell	377	470	24.7

Burlington	Alamance	35,930	37,266	3.7	Harnett	Duplin, Sampson	249	215	2.4
Hurricane	Yancey	1,348	1,452	7.7	Harnettville	Hertford	165	151	-8.5
Calabash	Brunswick	154	128	-16.9	Harrisburg	Cahawba	1,090	1,413	50.5
Calypso	Duplin	462	689	49.1	Hassell	Martin	160	109	-31.9
Cameron	Moore	204	225	10.3	Havelock	Craven	3,012	17,718	486.2
Condor	Montgomery	561	868	54.7	Haw River	Alamance	1,944	1,850	-4.4
Canton	Haywood	5,158	4,631	-10.2	Hayesville	Clay	428	376	-12.1
Cape Carteret	Carterset	616	944	53.2	Haywood	Chatham	NA	190	NA
Carolina Beach	New Hanover	1,663	2,000	20.3	Hazlewood	Haywood	2,057	1,811	-12.0
Carboro	Orange	5,058	7,336	45.0	Henderson	Vance	13,896	13,522	-2.7
Carthage	Moore	1,034	925	-10.5	Hendersonville	Henderson	6,443	6,862	6.5
Cary	Wake	7,686	21,763	183.2	Hertford	Perquimans	2,023	1,941	-4.1
Casar	Cleveland	339	346	2.1	Hickory	Burke, Catawba	20,569	20,757	0.9
Cashiers	Jackson	230	553	140.4	High Point	(a)	63,229	63,380	0.2
Castalia	Nash	265	358	35.1	High Shoals	Gaston, Lincoln	563	586	4.1
Caswell Beach	Brunswick	28	110	292.9	Highlands	Macon	583	653	12.0
Catawba	Catawba	565	509	-9.9	Hildebrand	Burke	521	628	20.5
Centerville	Franklin	123	135	9.8	Hillsborough	Orange	1,444	3,019	109.1
Cerro Gordo	Columbus	322	295	-8.4	Hobgood	Halifax	530	483	-8.9
Chadbourn	Columbus	2,213	1,975	-10.8	Hoffman	Richmond	434	389	-10.4
Chadwick Acres	Onslow	12	15	25.0	Holden Beach	Brunswick	136	232	70.6
Chapel Hill	Durham, Orange	26,199	32,421	23.7	Holly Springs	Wake	697	688	-1.3
Charlotte	Mecklenburg	241,420	314,447	30.2	Holly Ridge	Onslow	415	465	12.0
Cherryville	Gaston	5,258	4,844	-7.9	Hollyville	Pamlico	NA	100	NA
China Grove	Rowan	1,788	2,081	16.4	Hookerton	Greene	441	460	4.3
Chowan County	Beaufort	566	644	13.8	Hope Mills	Cumberland	1,866	5,412	190.0
Clarendon	Catawba	788	880	11.7	Hot Springs	Madison	653	678	3.8
Clarkton	Bladen	662	664	0.3	Hudson	Caldwell	2,820	2,888	2.4
Clayton	Johnston	3,103	4,091	31.8	Huntersville	Mecklenburg	1,538	1,294	-15.9
Cleveland	Rowan	614	595	-3.1	Indian Beach	Carteret	245	54	-78.0
Clinton	Sampson	7,157	7,552	5.5	Indian Trail	Union	405	811	100.2
Clyde	Haywood	814	1,008	23.8	Jackson	Northampton	762	720	-5.5
Cookley	Edgecombe	NA	NA	NA	Jackson Springs	Moore	NA	NA	NA
Coats	Harnett	1,051	1,385	31.8	Jacksonville	Onslow	16,289	17,056	4.7
Cofield	Hertford	318	465	46.2	Jamestown	Guildford	1,297	2,148	65.6
Colerain	Bertie	373	284	-23.9	Jamesville	Martin	533	604	13.3
Columbia	Tyrrell	902	758	-16.0	Jason	Greene	NA	NA	NA
Columbus	Polk	731	727	-0.5	Jefferson	Ashe	943	1,086	15.2
Como	Hertford	211	89	-57.8	Jonesville	Yadkin	1,659	1,752	5.6
Concord	Cabarrus	18,464	16,942	-8.2	Jupiter	Buncombe	208	NA	NA
Conetoe	Edgecombe	160	215	34.4	Kelford	Bertie	295	254	-13.9
Conover	Catawba	3,555	4,245	26.5	Konansville	Duplin	762	931	22.2
Conway	Northampton	694	678	-2.3	Kenly	Johnston, Wilson	1,370	1,433	4.6
Cornelius	Mecklenburg	1,296	1,460	12.7	Kernersville	Forsyth	4,815	6,802	41.3
Cove City	Craven	485	500	3.1	Kill Devil Hills	Dare	357	1,796	403.1
Creamerton	Gaston	2,142	1,869	-12.7	Kings Mountain	Cleveland, Gaston	8,465	9,080	7.3
Creedmoor	Granville	1,405	1,641	16.8	Kinston	Lenoir	23,020	25,234	9.6
Creswell	Washington	633	426	-32.7	Kittrell	Vance	427	225	-47.3
Crossnore	Avery	264	297	12.5	Knightdale	Wake	815	985	20.9
Dallas	Gaston	4,059	3,340	-17.7	Kure Beach	New Hanover	394	611	55.1
Danbury	Stokes	152	140	-7.9	LaGrange	Lenoir	2,679	3,147	17.5%
Davidson	Iredell, Mecklenburg	2,931	3,241	10.6	Lake Lure	Rutherford	456	488	7.0
Deaville	Gaston	11	7	-56.4	Lake Waccamaw	Columbus	924	1,133	22.6
Denton	Davidson	1,017	949	-6.7	Landis	Rowan	2,297	2,092	-8.9
Dillsboro	Jackson	215	179	-16.7	Lansing	Ashe	283	194	-31.4
Dobson	Surry	933	1,222	31.0	Loske	Northampton	114	96	-15.8
Dorches	Nash	686	885	29.0	Lattimore	Cleveland	257	237	-7.8
Dover	Craven	585	600	2.6	Laurel Park	Henderson	581	764	31.5
Drexel	Burke	1,431	1,392	-2.7	Laurinburg	Scotland	8,859	11,480	29.6
Dublin	Bladen	283	477	68.6	Lawndale	Cleveland	544	469	-13.8
Dudley	Wayne	199	NA	NA	Lawrence	Edgecombe	NA	NA	NA
Dundarrach	Hoke	53	NA	NA	Leggett	Edgecombe	120	99	-17.5
Dunn	Harnett	8,302	8,962	7.9%	Lenoir	Caldwell	14,705	13,748	-6.5
Durham	Durham	95,438	100,831	5.7	Lewiston	Bertie	327	459	40.4
Earl	Cleveland	195	206	5.6	Lexington	Davidson	17,205	15,711	-8.7
East Arcadia	Bladen	556	461	-17.1	Liberty	Randolph	2,167	1,997	-7.8
East Bend	Yadkin	485	602	24.1	Lillesville	Anson	641	588	-8.3
East Laurinburg	Scotland	487	536	10.1	Lillington	Harnett	1,155	1,948	68.7
East Spencer	Rowan	2,217	2,150	-3.0	Lincolnton	Lincoln	5,293	4,879	-7.8
Eden	Rockingham	15,871	15,672	-1.3	Linden	Cumberland	205	365	78.0

City	County Location	1970 Census	1980 Census	Percentage Change	City	County Location	1970 Census	1980 Census	Percentage Change
Linville	Avery	NA	244	NA	Rockwell	Rowan	999	1,339	34.0
Littleton	Halifax	903	820	-9.2	Rocky Mount	Edgecombe, Nash	34,284	41,283	20.4
Locust	Stanly	1,484	1,590	7.1	Rolesville	Wake	533	381	-28.5
Long Beach	Brunswick	493	1,844	274.0	Ronda	Wilkes	465	457	-1.7
Long View	Burke, Catawba	3,360	3,587	6.8	Roper	Washington	649	795	22.5
Louisburg	Franklin	2,941	3,238	10.1	Rose Hill	Duplin	1,448	1,508	4.1
Love Valley	Iredell	40	55	37.5	Roseboro	Sampson	1,235	1,227	-0.6
Lowell	Gaston	3,307	2,917	-11.8	Rosman	Transylvania	407	512	25.8
Lucama	Wilson	610	1,070	75.4	Rowland	Robeson	1,358	1,841	35.6
Lumber Bridge	Robeson	117	171	46.2	Roxboro	Person	5,370	7,532	-86.4
Lumberton	Robeson	16,961	18,241	7.5	Roxobel	Bertie	347	278	-19.9
McAdenville	Gaston	950	947	-0.3	Rural Hall	Forsyth	1,289	1,356	3.6
McDonald	Robeson	80	117	46.3	Ruth	Rutherford	360	381	5.8
McFarlan	Anson	140	133	-5.0	Edgecombe	Burke	821	1,108	35.0
Macclesfield	Edgecombe	536	504	-6.0	Rutherfordton	Rutherford	3,245	3,434	5.8
Macon	Warren	179	153	-14.5	Salemburg	Sampson	669	742	10.9
Madison	Rockingham	2,018	2,806	39.0	Salisbury	Rowan	22,515	22,677	0.7
Maggie Valley	Haywood	159	202	27.0	Saluda	Polk	546	607	11.2
Magnolia	Duplin	614	592	-3.6	Sanford	Lee	11,716	14,773	26.1
Maldon	Catawba, Lincoln	2,416	2,574	6.5	Saratoga	Wilson	391	381	-2.6
Manteo	Dare	547	902	64.9	Scotland Neck	Halifax	2,869	2,834	-1.2
Marlette	Robeson	70	NA	NA	Seaboard	Northampton	611	687	12.4
Marlon	McDowell	3,335	3,684	10.5	Seagrove	Randolph	354	294	-16.9
Mars Hill	Madison	1,623	2,126	31.0	Selma	Johnston	4,356	4,762	9.3
Marshall	Madison	982	809	-17.6	Seven Devils	Avery, Watauga	0	54	0
Marshville	Union	1,405	2,011	43.1	Seven Springs	Wayne	188	166	-11.7
Matthews	Mecklenburg	783	1,648	110.5	Severn	Northampton	356	309	-13.2
Maury	Greene	421	NA	NA	Shady Forest	Brunswick	17	43	152.9
Maxton	Robeson, Scotland	1,885	2,711	43.8	Shallotte	Brunswick	597	680	13.9
Maydan	Rockingham	2,875	2,627	-8.6	Sharpsburg	(b)	789	997	26.4
Maysville	Jones	912	877	-3.8	Shelby	Cleveland	16,328	15,310	-6.2
Mebane	Alamance, Orange	2,573	2,782	8.1	Siler City	Chatham	4,689	4,446	-5.2
Mesic	Pamlico	369	390	5.7	Simpson	Pitt	383	407	6.3
Micro	Johnston	300	438	46.0	Sims	Wilson	205	192	-6.3
Middleburg	Vance	149	185	24.2	Smithfield	Johnston	6,677	7,288	9.2
Middlesex	Nash	729	837	14.8	Snow Hill	Greene	1,359	1,374	1.1
Mildred	Edgecombe	NA	NA	NA	Southern Pines	Moore	5,937	8,620	45.2
Milton	Caswell	235	235	0.0	Southern Shores	Dare	75	395	NA
Minnesota Beach	Pamlico	41	171	317.1	Southport	Brunswick	2,220	2,824	27.2
Mint Hill	Mecklenburg	2,262	7,915	249.9	Sparta	Alleghany	1,304	1,687	29.4
Mocksville	Davie	2,529	2,637	4.3	Speed	Edgecombe	142	95	-33.1
Monroe	Union	11,282	12,639	12.0	Spencer	Rowan	3,075	2,938	-4.5
Montreat	Buncombe	581	741	27.5	Spencer Mountain	Gaston	300	169	-43.7
Mooresboro	Cleveland	453	405	-8.6	Spindale	Rutherford	3,048	4,246	10.3
Mooresville	Iredell	8,808	8,575	-2.6	Spring Hope	Nash	1,334	1,254	-6.0
Morehead City	Carteret	5,233	4,359	-16.7	Spring Lake	Cumberland	3,968	6,273	58.1
Morganton	Burke	13,625	13,763	1.0	Spruce Pine	Mitchell	2,333	2,282	-2.2
Morrisville	Wake	209	251	20.1	St. Pauls	Robeson	2,011	1,639	-18.5
Morven	Anson	562	765	36.1	Staley	Randolph	239	204	-14.6
Mount Airy	Surry	7,325	6,862	-6.3	Stallings	Union	726	1,826	151.5
Mount Gilead	Montgomery	1,286	1,423	10.7	Stanfield	Stanly	458	463	1.1
Mount Holly	Gaston	5,107	4,530	-11.3	Stanley	Gaston	2,336	2,341	0.2
Mount Olive	Duplin, Wayne	4,914	4,876	-0.8	Stantonsburg	Wilson	869	920	5.9
Mount Pleasant	Cabarrus	1,174	1,210	3.1	Star	Montgomery	892	816	-8.5
Murfreesboro	Hertford	4,418	5,007	-31.9	Statesville	Iredell	20,007	18,622	-6.9
Murphy	Cherokee	2,082	2,070	-0.6	Stedman	Cumberland	505	723	43.2
Nags Head	Dare	414	1,020	146.4	Stem	Granville	242	222	-8.3
Nashville	Nash	1,670	2,678	60.4	Stoneville	Rockingham	1,030	1,054	2.3
Navassa	Brunswick	487	439	-9.9	Stonewall	Pamlico	335	360	7.5
New Bern	Craven	14,660	14,557	-0.7	Stovall	Granville	405	417	3.0

New London	Stanly	285	454	59.3	Sunset Beach	Brunswick	108	304	181.5
Newland	Avery	524	722	37.8	Surf City	Pender	166	391	135.5
Newport	Carteret	1,735	1,883	8.5	Swansboro	Onslow	1,207	976	-19.1
Newton	Catawba	7,857	7,624	-3.0	Sylvia	Jackson	1,561	1,699	8.8
Newton Grove	Sampson	546	564	3.3	Tabor City	Columbus	2,400	2,710	12.9
Norlina	Warren	969	901	-7.0	Tar Heel	Bladen	87	118	35.6
Norman	Richmond	157	252	60.5	Tarboro	Edgecombe	9,425	8,634	-8.4
North Wilkesboro	Wilkes	3,357	3,260	-2.9	Taylorville	Alexander	1,231	1,103	-10.4
Norwood	Stanly	1,896	1,818	-4.1	Teachey	Duplin	219	373	70.3
Oak City	Martin	559	475	-15.0	Thomasville	Davidson	15,230	14,144	-7.1
Oakboro	Stanly	568	587	3.3	Topsail Beach	Pender	108	264	144.4
Ocean Isle Beach	Brunswick	78	143	83.3	Trent Woods	Craven	719	1,177	63.7
Old Fort	McDowell	676	752	11.2	Trenton	Jones	539	407	-24.5
Old Sparta	Edgecombe	NA	NA	NA	Troutman	Iredell	797	1,360	70.6
Oriental	Pamlico	445	536	20.4	Troy	Montgomery	2,429	2,702	11.2
Orrum	Robeson	162	167	3.1	Turkey	Polk	1,951	1,796	-7.9
Oxford	Granville	7,178	7,603	5.9	Unionville	Sampson	329	417	26.7
Pantego	Beaufort	218	185	-15.1	Valdese	Union	NA	NA	NA
Parkton	Robeson	550	564	2.5	Vanceboro	Burke	3,182	3,364	5.7
Parmalee	Martin	373	484	29.8	Vanceboro	Craven	758	833	9.9
Patterson Springs	Cleveland	478	731	52.9	Vandemere	Pamlico	379	335	-11.6
Peachland	Anson	556	506	-9.0	Vass	Moore	885	828	-6.4
Pembroke	Robeson	1,982	2,698	36.1	Waco	Cleveland	245	322	31.4
Pikeville	Wayne	580	662	14.1	Wade	Cumberland	315	474	50.5
Pilot Mountain	Surry	1,309	1,090	-16.7	Wadesboro	Anson	3,977	4,206	5.8
Pine Knoll Shores	Carteret	62	646	941.9	Wagram	Scotland	718	617	-14.1
Pine Level	Johnston	983	953	-3.1	Wake Forest	Wake	3,148	3,780	20.1
Pinebluff	Moore	570	935	64.0	Wallace	Duplin, Pender	2,905	2,903	-0.1
Pinehurst	Moore	1,056	NA	NA	Walnut Cove ..	Stokes	1,213	1,147	-5.4
Pinetops	Edgecombe	1,379	1,465	6.2	Walnut Creek..	Wayne	81	343	323.5
Pineville	Macklenburg	1,948	1,525	-21.7	Walstonburg	Greene	176	181	2.8
Pink Hill	Lenoir	522	644	23.4	Warrenton	Warren	1,035	908	-12.3
Pittsboro	Chatham	1,447	1,332	-7.9	Warsaw	Duplin	2,701	2,910	7.7
Plymouth	Washington	4,774	4,571	-4.3	Washington	Beaufort	8,961	8,418	-6.1
Polkton	Anson	845	762	-9.8	Washington Park	Beaufort	517	514	-0.6
Polkville	Cleveland	494	528	6.9	Watha	Pender	181	196	8.3
Pollocksville	Jones	456	318	-30.3	Waxhaw	Union	1,248	1,208	-3.2
Powellsville	Bertie	247	320	29.6	Waynesville	Haywood	6,488	6,765	4.3
Princeton	Johnston	1,044	1,034	-1.0	Weaverville	Buncombe	1,280	1,495	16.8
Princaville	Edgecombe	654	1,508	130.6	Webster	Jackson	181	200	10.5%
Proctorville	Robeson	157	205	30.6%	Weldon	Halifax	2,304	1,844	-20.0%
Raeford	Hoke	3,180	3,630	14.2	Hendell	Wake	1,929	2,222	15.2
Raleigh	Watauga	122,830	150,255	22.3	West Jefferson	Ashe	889	822	-7.5
Ramsour	Randolph	1,328	1,162	-12.5	Whispering Pines	Moore	362	1,160	220.4
Randlement	Randolph	2,312	2,156	-6.7	Whitakers	Edgecombe, Nash	926	924	-0.2
Ranlo	Gaston	2,092	1,774	-15.2	White Lake	Bladen	232	968	317.2
Raynham	Robeson	75	83	10.7	Whiteville	Columbus	4,195	5,565	32.7
Red Oak	Nash	359	314	-12.5	Wilkesboro	Wilkes	2,038	2,335	14.6
Red Springs	Robeson	3,383	3,607	6.6	Williamsboro	Vance	NA	59	NA
Reidsville	Rockingham	13,636	12,492	-8.4	Williamston	Martin	6,570	6,159	-6.3
Rennert	Robeson	175	178	1.7	Wilmington	New Hanover	46,169	44,000	-4.7
Rhodhiss	Burke, Caldwell	784	727	-7.3	Wilson	Wilson	29,347	34,424	17.3
Rich Square	Northampton	1,254	1,057	-15.7	Windsor	Bertie	2,199	2,126	-3.3
Richfield	Stanly	306	373	21.9	Winfall	Perquimans	581	634	9.1%
Richlands	Onslow	935	825	-11.8	Wingate	Union	2,569	2,615	1.8
Roanoke Rapids	Halifax	13,508	14,702	8.8	Winston-Salem	Forsyth	133,683	131,805	-1.3
Robbins	Moore	1,059	1,256	18.6	Winterville	Pitt	1,437	2,052	42.8
Robbinsville	Graham	777	1,370	76.3	Hinton	Hertford	917	825	-10.0
Robersonville	Martin	1,910	1,981	3.7	Woodfin	Buncombe	2,831	3,260	15.2
Rockingham	Richmond	5,852	8,300	41.8	Woodland	Northampton	744	861	15.7
Woodville									
Wrightsville Beach									
Yadkinville									
Yaupon Beach									
Youngsville									
Zebulon									
North Carolina Municipal Population									
2,210,008									
2,476,041									
15.6									

(a) Davidson, Guilford, and Randolph counties.

(b) Edgecombe, Nash, and Wilson counties.

(c) Not Available

Ref. 9

North Carolina Department of Human Resources
Division of Health Services
P.O. Box 2091 • Raleigh, North Carolina 27602-2091

James G. Martin, Governor
David T. Flaherty, Secretary

Ronald H. Levine, M.D., M.P.H.
State Health Director

25 April 1988

Ms. Susan Deihl
EPA NC CERCLA Project Officer
EPA Region IV Waste Division
345 Courtland Street, N.E.
Atlanta, GA 30365

Dear Ms. Deihl:

RE: Preliminary Assessment Update
Renroh NC D980728687
Highway 50 and Lloyd Street
Holly Ridge, Onslow County, NC 28445

The Renroh site is located at the corner of Hwy. 50 and Lloyd St. in Holly Ridge, N.C. This is in Onslow County. The county code is 67 and this in the third Congressional District.

In 1977 approximately 2,000 drums of 2,4-dinitrophenol were discovered in a dilapidated U.S. Army gym in Holly Ridge, NC. This building was originally built in the early 1940's as part of Camp David. At the time of the discovery the building was owned by Doug Horner, Renroh, and was being used as a warehouse.

When discovered, the roof of the building had caved in and a number of the drums had broken open. In 1980 the drums were removed under a court order. Most of the drums were moved to Lackey Ind. Whse. (NCD080891039) in Whiteville, NC. Several hundred were reportedly sent to a Renroh warehouse in New Bern, American Cyanamide in Damascus, VA, and some were reportedly shipped to an unknown company in Taiwan. Approximately 100 drums from the Renroh site were discovered in a warehouse owned by Marlow Bostic, NCD982119554, on U.S. 17 about 1 mile north of Holly Ridge.

After the drums were removed from the Renroh site, the property was owned for approximately one year by the City of Holly Ridge who sold it to Allen Hobbs in 1982. The dilapidated building has been removed and the site is presently a vacant lot. The concrete slab floor and fence that was erected around the building after the drum discovery remain on the site..

Ms. Susan Deihl
29 April 1988
Page 2

The depth to the water table on the site is estimated to be about 10 feet. This is based on average depth to the water table in coastal N.C. The annual precipitation in the Holly Ridge area is 56 to 64 inches and the annual evaporation is about 42 inches which yields a net precipitation of 14 to 22 inches. The site is essentially flat and is about 4 miles inland from the coast. The site drains to Cypress Branch approximately 3,000 ft. south of the site. Cypress Branch joins with County Line Branch to form Batts Mill Creek about 2 miles south of the Renroh site. Batts Mill Creek enters the Intercoastal Waterway about 4 miles southeast of Holly Ridge.

The town of Holly Ridge receives water service from Onslow County Water Service which utilizes wells near Richlands approximately 30 miles north of Holly Ridge and a well on NC 210 about 8 miles northeast of Holly Ridge. All areas within the town limits of Holly Ridge are served by this water system. In addition water lines run about 1/2 miles down Hwy. 17 toward Wilmington and about 1 mile on Hwy 50 east toward the beach. A house count on a USGS Topographic Map of the area not served by the town of Holly Ridge indicates 13, 52, 173, and 291 houses within 1, 2, 3, and 4 miles respectively of the Renroh site utilize private wells. Applying a factor of 3.8 residents per house this yields 49,198, 657, and 1106 residents within 1, 2, 3, and 4 miles of the site, that rely on ground water. Study of the topo map also indicates that the nearest house not served by city water is approximately 3,500 feet from the Renroh site.

No further action is recommended at this site due to the fact that the drums and dilapidated warehouse have been removed from the site, and because of low ground water use in the area. If you have any questions, please contact me at (919) 733-2801.

Sincerely,

Jack Butler, Environmental Engineer
Superfund Branch
Solid Waste Management Section

JB/pb/0576b.36

22 April 1988

TO: File
FROM: Jack Butler
RE: Water Service within 3 miles of Renroh, NCD980728687.

Mr. O'Neal Gurnanus, Assistant Administrator Onslow County Water Service (919-455-0722) was contacted on this date to obtain information on water service in the Holly Ridge area. Mr. Gurnanus reported that the Onslow County Water Service obtains water from wells near Richlands approximately 30 miles north of Holly Ridge and sells it to the Town of Holly Ridge.

Ms. Joann Odum, Town of Holly Ridge (919-329-7081) confirmed that the town purchases water from the Onslow Co. Water Service and that there were wells near Richlands and on NC 210 (about 8 miles northeast of Holly Ridge). Ms. Odum reported that the town does not have a water distribution map but they serve approximately 250 meters. All areas within Holly Ridge are served and in addition, lines run about 1/2 miles down Hwy. 17 toward Wilmington and about 1 mile on Hwy. 50 east toward the beach.

A house count on a USGS Topographic Map of the area not served by the town of Holly Ridge indicates 13, 52, 173 and 291 houses within 1, 2, 3, and 4 miles respectively of the Renroh site utilize private wells. Applying a factor of 3.8 residents per house this yields 49,198, 657, and 1,106 residents within 1, 2, 3, and 4 miles of the site that rely on ground water. Study of the topo map also indicates that the nearest house not served by city water is approximately 3,500 feet from the Renroh site.

JB/pb/0489b.56.

May 18, 1989

Ref. 11

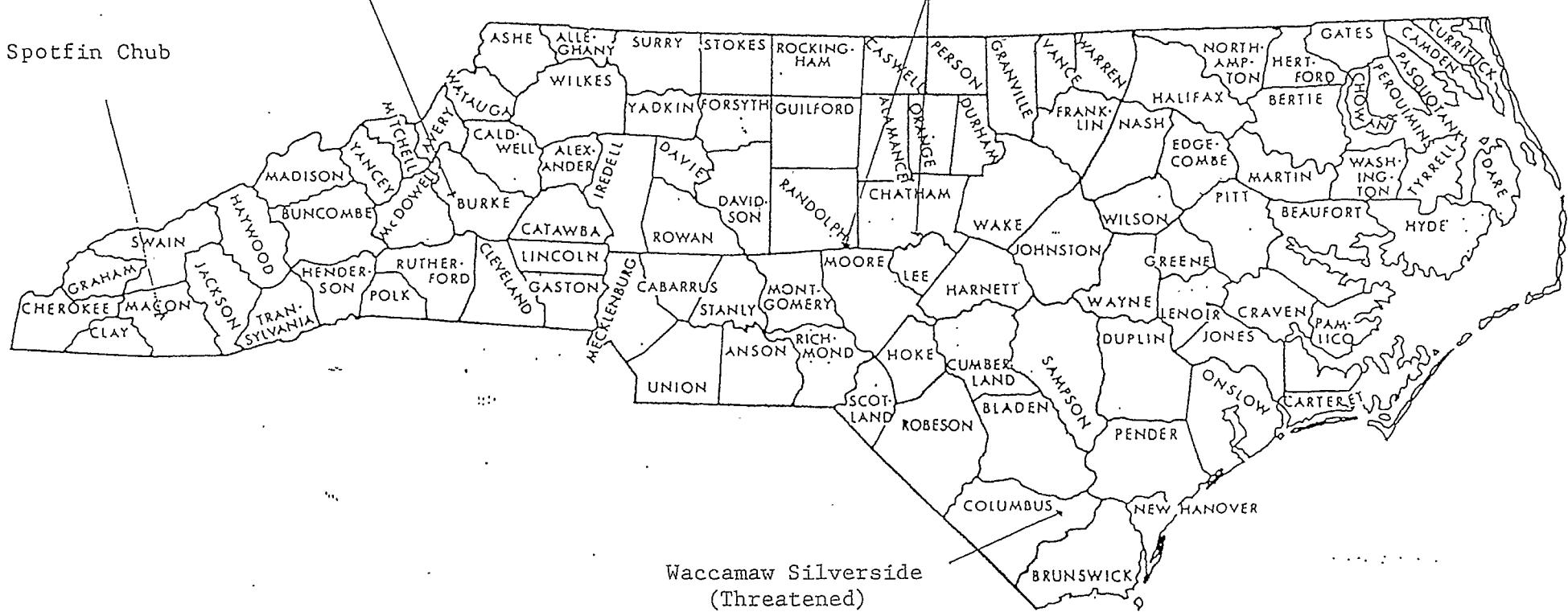
TO: Superfund Branch Staff

FROM: Pat DeRosa *PD*

RE: Critical Habitats of Federally Listed Endangered Species in North Carolina

On May 18, 1989, I spoke by telephone with John Fridell, US Fish and Wildlife Service, Asheville, NC (704) 259-0321 to request an update on critical habitats in North Carolina. Mr. Fridell said the Fish and Wildlife Service has been reorganized into a western and eastern office in North Carolina. His office now handles only western North Carolina. He said there have been no changes in the designated critical habitats identified in western North Carolina.

I then spoke by telephone with Debby Mignogno, US Fish and Wildlife Service, Raleigh, NC (919) 856-4520 regarding critical habitats in eastern North Carolina. Ms. Mignogno sent the attached maps of the 2 critical habitats designated in eastern North Carolina. Please note that the Waccamaw Silverside is listed as threatened, not endangered.


PD/pb/critical.hab

CRITICAL HABITATS OF FEDERALLY LISTED
ENDANGERED SPECIES IN NC

Mountain Golden
Heather

Spotfin Chub

Cape Fear Shiner

1 inch = approx. 53 miles

RECEIVED

MAY 19 1989
6/88

SUPERFUND BRANCH

CAPE FEAR SHINER

Notropis mekistocholas

Order: Cypriniformes

Family: Cyprinidae

Status: Endangered (Federal Register 9/25/87)

Range: The Cape Fear shiner is known from four small populations in the Cape Fear River drainage in Randolph, Moore, Lee, Harnett, and Chatham Counties, North Carolina.

The strongest population is located around the junction of the Rocky River and Deep River in Chatham and Lee Counties where the fish inhabits the Deep River from the upstream limits of the backwaters of Locksville Dam upstream to the Rocky River; then upstream from the Rocky River to Bear Creek, and upstream from Bear Creek to the Chatham County Road 2156 Bridge. A few individuals have been collected just downstream of the Locksville Dam, but because of the limited extent of Cape Fear shiner habitat at this site, it is not believed this is a separate population. Instead, it is thought these fish represent a small number of individuals that periodically drop down from the population above Locksville Dam pool.

The second population is located above the Rocky River Hydroelectric Dam. This population was historically the best, but the area yielded only one specimen after extensive surveys by Potters and Huish (1985). The third population is found in the Deep River system in Randolph and Moore Counties. This population is believed to be small (Potters and Huish 1985, 1986). In a 1985 survey, three individuals were found above the Highfalls Hydroelectric Reservoir; one in Fork Creek, Randolph County, and two in the Deep River, Moore County. The species was also found downstream of the Highfalls Dam. However, the extent of suitable habitat in this stream reach is limited, and it is thought that these individuals likely result from downstream movement from above the reservoir where Cape Fear shiner habitat is more extensive. The fourth population is found in Neal Creek, which flows into the Cape Fear River near Lillington in Harnett County.

Three historic populations have apparently been extirpated: one in Robeson Creek, Chatham County, believed lost when Jordan Lake flooded part of the creek; and one each in Parkers Creek and Kenneth Creek in Harnett County, which disappeared for unknown reasons. Other undiscovered populations or population segments have likely been lost due to reservoir construction in the Deep, Haw, and Cape Fear Rivers.

Description: The Cape Fear shiner is small, rarely exceeding 2 inches in length. The fish's body is flushed with a pale silvery yellow, and a black band runs along its sides (Snelson 1971). The fins are yellowish and somewhat pointed. The upper lip is black, and the lower lip bears a thin black bar along its margin. The Cape Fear shiner, unlike most other members of the large genus Notropis, feeds extensively on plant material, and its digestive tract is modified for this diet by having an elongated, convoluted intestine.

Reasons for Current Status: The Cape Fear shiner may always have existed in low numbers. However, its recent reduction in range and its small population size (Pottern and Huish 1985, 1986) increases the species' vulnerability to a catastrophic event, such as a toxic chemical spill. Dam construction in the Cape Fear system has probably had the most serious impact on the species by inundating the species' rocky riverine habitat; and changes in flow regulation at existing hydroelectric facilities could further threaten the species.

The deterioration of water quality has likely been another factor in the species' decline. The North Carolina Department of Natural Resources and Community Development (1983) classified water quality in the Deep River, Rocky River, and Bear Creek as good to fair, and referred to the Rocky River below Siler City as an area where their sampling indicates degradation. That report also stated: "Within the Cape Fear Basin, estimated average annual soil losses from cropland ranged from 3 tons per acre in the lower basin to 12 tons in the headwaters." The North Carolina State Division of Soil and Water Conservation considers 5 tons of soil loss per acre as the maximum allowable.

Potential threats to the species and its habitat could come from such activities as road construction, stream channel modification, changes in stream flows for hydroelectric power, impoundments, land use changes, wastewater discharges, and other projects in the watershed if such activities are not planned and implemented with the survival of the species and the protection of its habitat in mind.

Habitat: The species is generally associated with gravel, cobble, and boulder substrates and has been observed to inhabit slow pools, riffles, and slow runs (Snelson 1971, Pottern and Huish 1985). In these habitats, the species is typically associated with schools of other related species, but it is never the numerically dominant species. Juveniles are often found in slackwater, among large rock outcrops in midstream, and in flooded side channels and pools (Pottern and Huish 1985).

Critical Habitat: (1) North Carolina, Chatham County. Approximately 4.1 miles of the Rocky River from North Carolina State Highway 902 Bridge downstream to Chatham County Road 1010 Bridge; (2) North Carolina,

Chatham and Lee Counties. Approximately 0.5 river mile of Bear Creek, from Chatham County Road 2156 Bridge downstream to the Rocky River, then downstream in the Rocky River (approximately 4.2 river miles) to the Deep River, then downstream in the Deep River (approximately 2.6 river miles) to a point 0.3 river mile below the Moncure, North Carolina, U.S. Geological Survey Gaging Station; and (3) North Carolina. Randolph and Moore Counties. Approximately 1.5 miles of Fork Creek, from a point 0.1 river mile upstream of Randolph County Road 2873 Bridge downstream to the Deep River then downstream approximately 4.1 river miles of the Deep River in Randolph and Moore Counties, North Carolina, to a point 2.5 river miles below Moore County Road 1456 Bridge.

Constituent elements include clean streams with gravel, cobble, and boulder substrates with pools, riffles, shallow runs and slackwater areas with large rock outcrops and side channels and pools with water of good quality with relatively low silt loads.

Feeding Habits: Plant material forms the primary part of the diet.

Reproduction and Development: No information is presently available on breeding behavior, fecundity, or longevity.

Population Level: Total numbers are unknown, but all populations appear to be small. Surveys conducted in 1984 and 1985 yielded 101 individuals from the population located around the junction of the Rocky River and Deep River in Chatham and Lee Counties, 1 specimen from the Rocky River near State Highway Bridge 902 in Chatham County, and 6 specimens from the Deep River system in Randolph and Moore Counties.

Management and Protection: Assuring survival of the Cape Fear shiner will require, at a minimum, maintaining good water quality and the natural conditions of the remaining habitat. Providing for a higher level of security will necessitate determining limiting factors and reestablishing additional populations into suitable waters within the historic range.

References:

North Carolina Department of Natural Resources and Community Development. 1983. Status of Water Resources in the Cape Fear River Basin. 135 pp.

Pottern, G.B., and M.T. Huish. 1985. Status survey of the Cape Fear shiner (Notropis mekistocholas). U.S. Fish and Wildlife Service Contract No. 14-16-0009-1522. 44 pp.

Pottern, G.B., and M.T. Huish. 1986. Supplement to the status survey of the Cape Fear shiner (Notropis mekistocholas). U.S. Fish and Wildlife Service Contract No. 14-16-0009-1522. 11 pp.

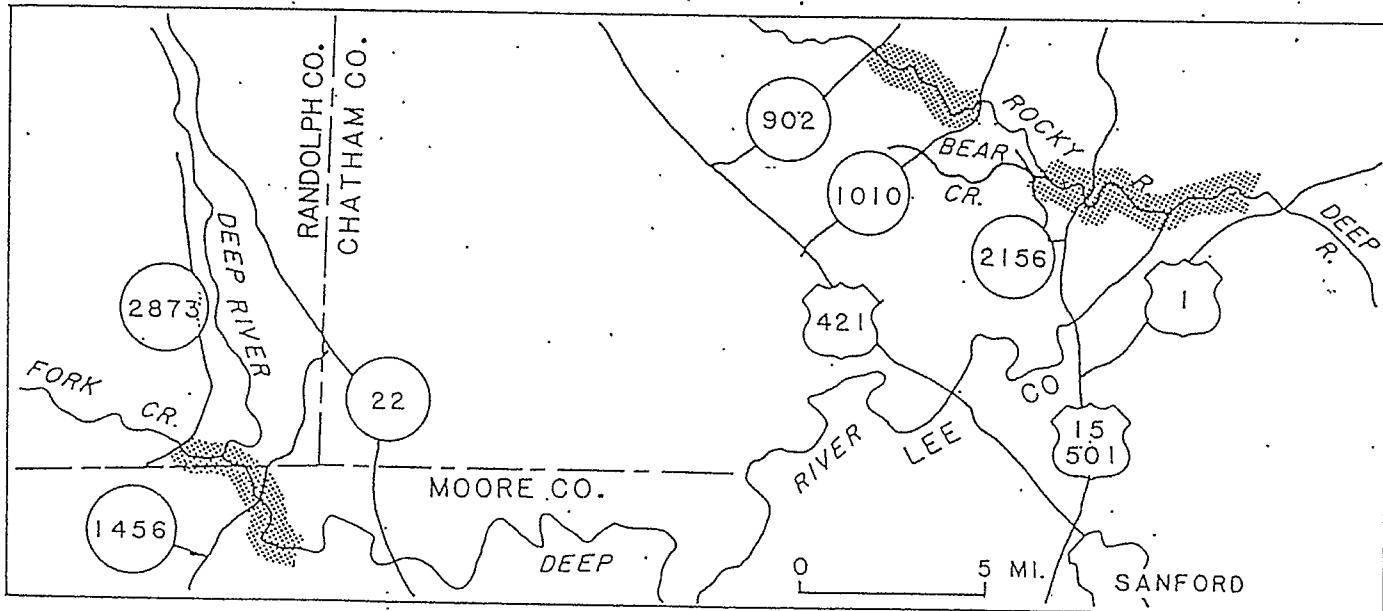
CAPE FEAR SHINER - N. mekistocholas

6/88

Snelson, F.F. 1971. Notropis mekistocholas, a new cyprinid fish endemic to the Cape Fear River basin. North Carolina. Copeia 1971:449-462.

U.S. Fish and Wildlife Service. 1987. Endangered and threatened wildlife and plants; determination of endangered species status and designation of critical habitat for the Cape Fear shiner. Federal Register 52(186):36034-36039.

NORTH CAROLINA - Critical Habitat


Notropis mekistocholas, "Cape Fear shiner"

(1) Chatham County. Approximately 4.1 miles of the Rocky River from North Carolina State Highway 902 Bridge downstream to Chatham County Road 1010 Bridge;

(2) Chatham and Lee Counties. Approximately 0.5 river mile of Bear Creek, from Chatham County Road 2156 Bridge downstream to the Rocky River, then downstream in the Rocky River (approximately 4.2 river miles) to the Deep River, then downstream in the Deep River (approximately 2.6 river miles) to a point 0.3 river mile below the Moncure, North Carolina, U.S. Geological Survey Gaging Station; and

(3) Randolph and Moore Counties. Approximately 1.5 miles of Fork Creek, from a point 0.1 river mile upstream of Randolph County Road 2873 Bridge downstream to the Deep River then downstream approximately 4.1 river miles of the Deep River in Randolph and Moore Counties, North Carolina, to a point 2.5 river miles below Moore County Road 1456 Bridge.

Constituent elements include clean streams with gravel, cobble, and boulder substrates with pools, riffles, shallow runs and slackwater areas with large rock outcrops and side channels and pools with water of good quality with relatively low silt loads.

RECEIVED

MAY 19 1989

7/87

SUPERFUND BRANCH

WACCAMAW SILVERSIDE

Menidia extensa

Order: Mugiliformes

Family: Atherinidae

Status: Threatened (Federal Register 4/8/87)

Range: Known only from Lake Waccamaw and the upper Waccamaw River in Columbus County, North Carolina. The silverside is found in the upper Waccamaw River only during periods of high water and is not a permanent resident. Lake Waccamaw (not to be confused with the town of Lake Waccamaw) is the property of the State of North Carolina and is administered by the North Carolina Department of Natural Resources and Community Development's Division of Parks and Recreation.

Description: The Waccamaw silverside, also known as "skipjack" or "glass minnow," is a small (growing to about 2.5 inches), slim, almost transparent fish with a silvery stripe along each side. Its body is laterally compressed, the eyes are large, and the jaw is sharply angled upward.

Reasons for Current Status: The primary threat is the deterioration of water quality in Lake Waccamaw resulting from nutrient buildup. Although specific sources are currently unidentified, runoff and leachate from surrounding development may be contributing to the buildup. Nutrients in the lake increased since 1973, and it now appears that any further increase could tip the scales toward water quality conditions that would threaten the species. The existing data, as interpreted by Casterlin et al. (1986), indicate that phosphate concentrations and loading rates in the lake more than tripled in the years between 1973 and 1981. They further state that "continued high rates of phosphorus input (organic pollution) will likely bring the lake to a hyper-eutrophic state . . . by the end of the century." Water quality could also be affected by habitat alteration from development and other changes in land use, both around the lake and in its watershed (especially Big Creek), if these activities are not planned and implemented with the protection of the Lake Waccamaw ecosystem in mind.

A permit to propagate hybrid bass at several sites in the Lake Waccamaw watershed has been granted by the North Carolina Wildlife Resources Commission. Although the permit stipulates certain precautionary measures, escape of non-native predators from such a project into the system could upset the existing predator-prey relationships in the lake to the detriment of the Waccamaw silverside and other fishes now present in the lake.

A final factor that could threaten the Waccamaw silverside relates to its very short life cycle. The fish spawn when one-year-old and most die shortly thereafter. Failure to spawn in any one year could jeopardize the species. Water quality problems related to nutrient loading, even on a short-term basis, could cause the extinction of this fish.

WACCAMAW SILVERSIDE - M. extensa

Habitat: Lake Waccamaw is a natural lake with an approximate surface area of 8,934 acres and an average depth of 7.5 feet. Although it is fed by acidic swamp streams, the lake has a virtually neutral pH. This neutral condition, unusual among North Carolina's coastal plain lakes, is believed to be caused by the buffering effect of the calcareous Waccamaw Limestone formation, which underlies the lake and is exposed on the north shore. The Waccamaw silverside inhabits open water throughout the lake, where schools are commonly found near the surface over shallow, dark-bottomed areas.

Critical habitat: North Carolina, Columbus County. Lake Waccamaw in its entirety to mean high water level, and Big Creek from its mouth at Lake Waccamaw upstream approximately 0.6 kilometers (0.4 miles) to where the creek is crossed by County Road 1947.

Constituent elements include high quality clear open water, with a neutral pH and clean sand substrate.

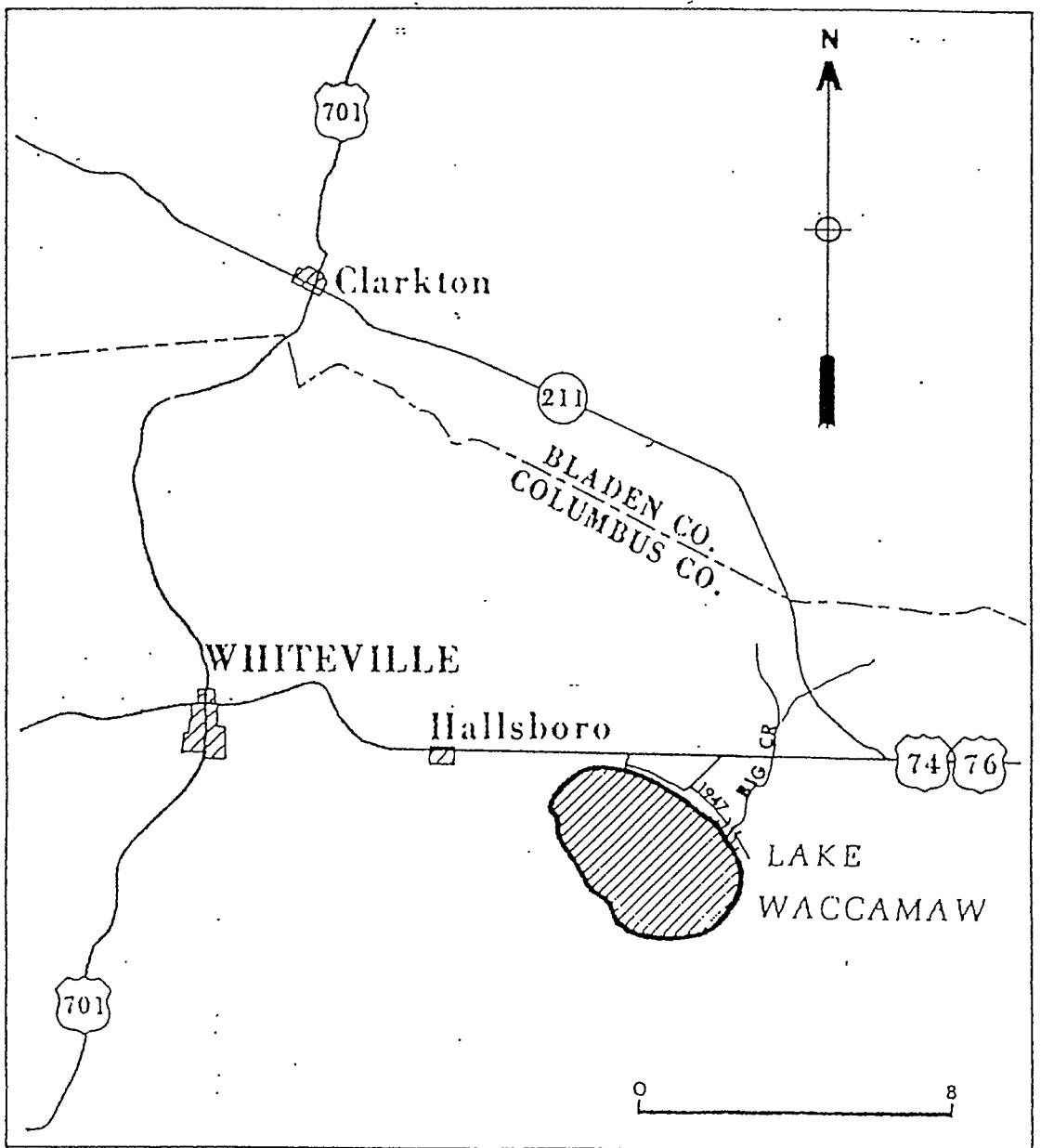
Reproduction and Development: Spawning occurs from April through June, but reaches to peak when water temperatures are between 68 and 72F. Fully developed larvae form small isolated schools by early May. No parental care of the young has been noted. The silversides reach sexual maturity by the following spring, spawn, and then shortly thereafter most of the adults die off. A few may survive a second winter.

Population level: Estimated to be in the millions.

Management (Activities, Recommendations, Implications): The taking of silversides for fish bait or for scientific purposes is not considered a threat to the species. These activities may continue in accordance with State regulations. Activities which could affect water and substrate quality by increasing siltation and/or nutrient loading, or by altering temperature or pH, will require monitoring and control as necessary and feasible. Some of the activities that could prove detrimental include indiscriminate logging, land use changes, stream alteration such as channelization or impoundment, bridge and road construction, improper pesticide/herbicide application, and point and nonpoint pollution discharge.

References:

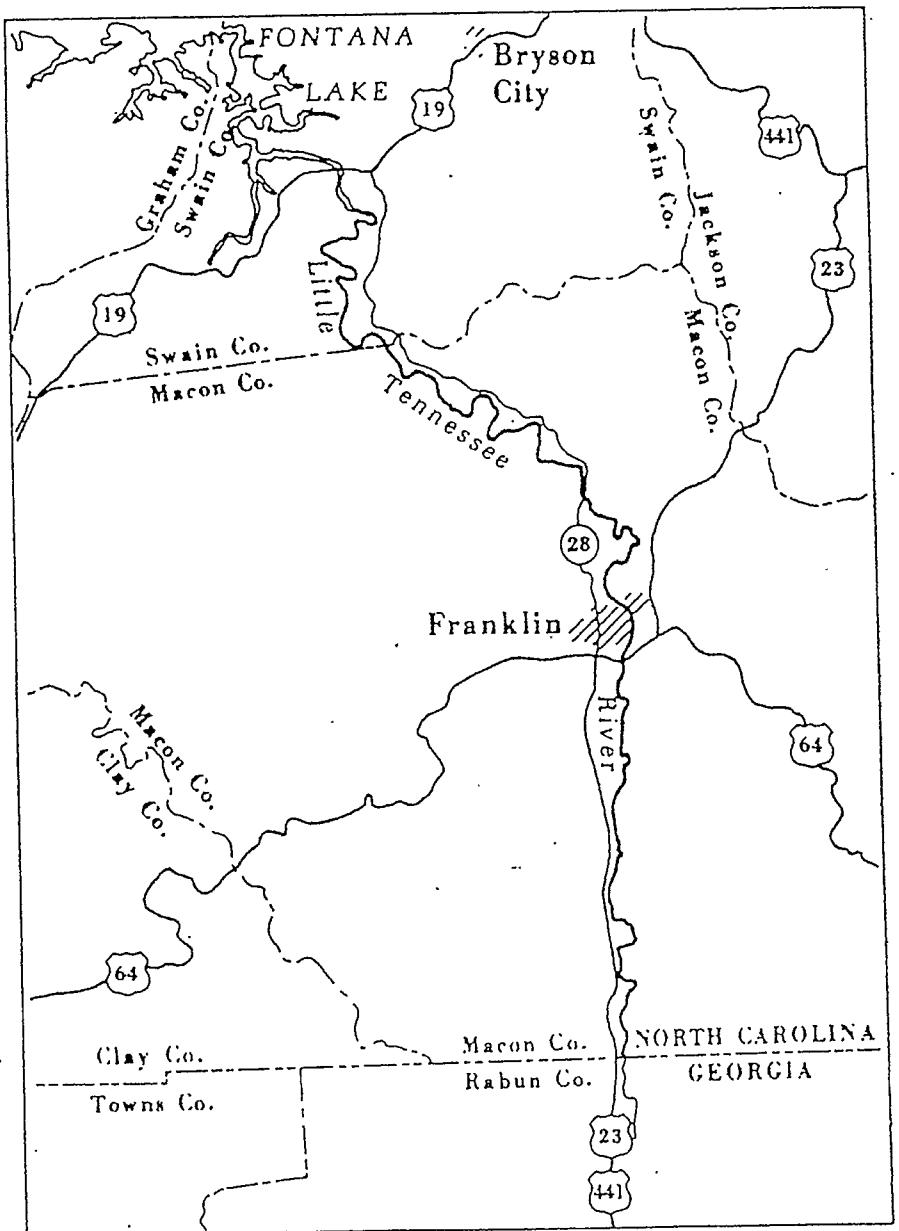
Casterlin, M.E., W.W. Reynolds, D.G. Lindquist, and C.G. Yarbrough. 1986. Algal and Physicochemical Indicators of Eutrophication in a Lake Harboring Endemic Species: Lake Waccamaw, North Carolina. *Journal of the Elisha Mitchell Scientific Society* 100(3):83-103.


Davis, J.R. and D.E. Louder. 1969. Life History of Menidia extensa. *Transactions of the American Fisheries Society* 98(3):466-472.

NORTH CAROLINA - Critical Habitat

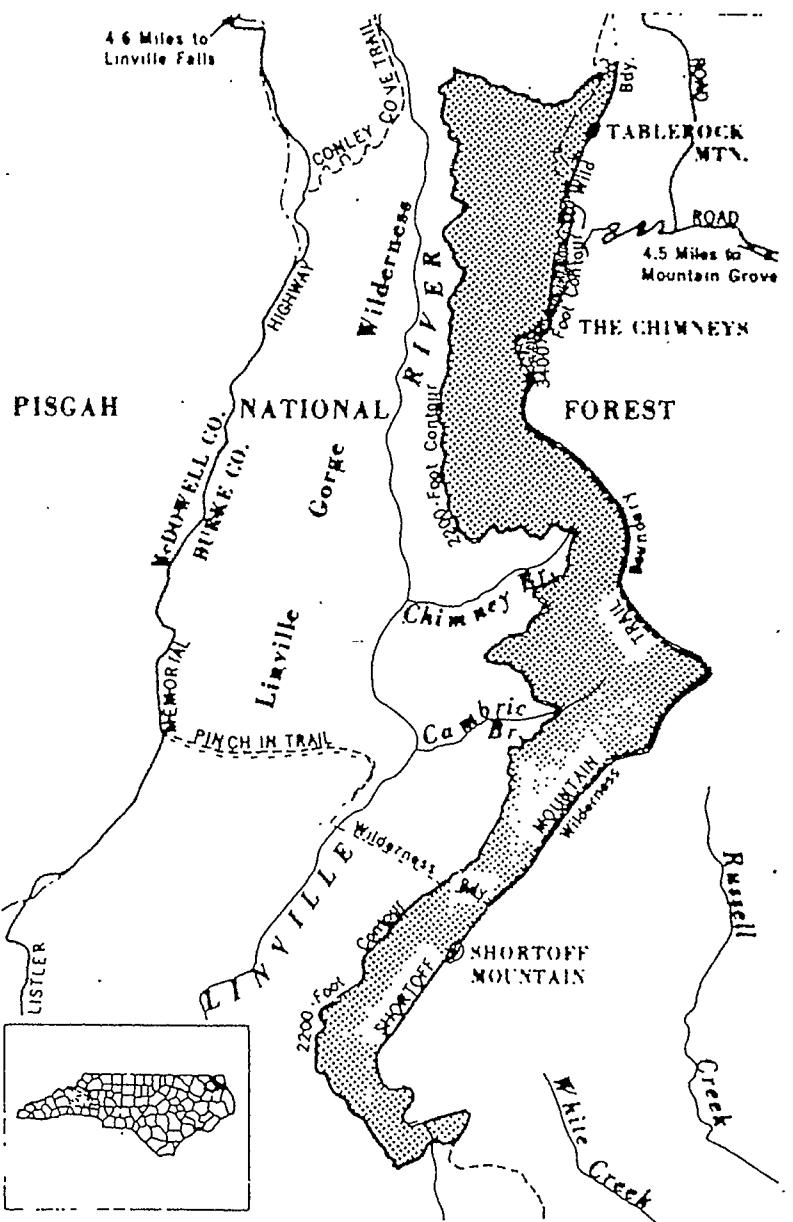
Menidia extensa, "Waccamaw silverside"

Columbus County. Lake Waccamaw in its entirety to mean high water level, and Big Creek from its mouth at Lake Waccamaw upstream approximately 0.6 kilometer (0.4 mile) to where the creek is crossed by County Road 1947.


Constituent elements include high quality clear open water, with a neutral pH and clean sand substrate.

5/10
NORTH CAROLINA - Critical Habitat

Hybopsis monacha, "spotfin chub"


Macon and Swain Counties. Little Tennessee River, main channel from the backwaters of Fontana Lake upstream to the North Carolina-Georgia state line.

NORTH CAROLINA - Critical Habitat

Hudsonia montana, "mountain golden heather"

Burke County. The area bounded by the following: on the west by the 2200' contour; on the east by the Linville Gorge Wilderness Boundary north from the intersection of the 2200' contour and the Shortoff Mountain Trail to where it intersects the 3400' contour at "The Chimneys"--then follow the 3400' contour north until it reintersects the Wilderness Boundary--then follow the Wilderness Boundary again northward until it intersects the 3200' contour extending west from its intersection with the Wilderness Boundary until it begins to turn south--at this point the Boundary extends due east until it intersects the 2200' contour.

Dangerous Properties of Industrial Materials

Sixth Edition

N. IRVING SAX

Assisted by:

Benjamin Feiner/Joseph J. Fitzgerald/Thomas J. Haley/Elizabeth K. Weisburger

4-9-85- #198.00 \$14.95 (C.C.)

607
440
529
1984
C.2

VAN NOSTRAND REINHOLD COMPANY
New York

2,4-DINITROPHENOL

CAS RN: 51285

NIOSH #: SL 2800000

mf: C₆H₄N₂O₅; mw: 184.12

Yellow crystals. mp: 112°, d: 1.683 @ 24°, vap. d: 6.35.

SYNS:

2,4-DINITROFENOL (DUTCH)
DINITROFENOLO (ITALIAN)
ALPHA-DINITROPHENOL

1-HYDROXY-2,4-DINITROBEN-
ZENE
NSC 1532

TOXICITY DATA: 3

cyt-mus-ipr 10 gm/kg
orl-rat TD_{Lo}:2040 mg/kg (8D pre-
21D post)
ipr-mus TD_{Lo}:40800 ug/kg (10-12D
preg).

skn-rbt 300 mg/4W-I MLD
mmo-esc 200 ppm/3H
orl-hmn LD_{Lo}:4300 ug/kg
orl-rat LD₅₀:30 mg/kg
ipr-rat LD₅₀:20 mg/kg
scu-rat LD₅₀:25 mg/kg
unk-rat LD₅₀:27 ug/kg
orl-mus LD₅₀:45 mg/kg
ipr-mus LD₅₀:26 mg/kg
orl-dog LD_{Lo}:30 mg/kg
scu-dog LD_{Lo}:20 mg/kg
ivn-dog LD_{Lo}:15 mg/kg
orl-rbt LD₅₀:30 mg/kg
scu-rbt LD_{Lo}:20 mg/kg
orl-gpg LD₅₀:81 mg/kg
skn-gpg LD_{Lo}:700 mg/kg
scu-gpg LD_{Lo}:25 mg/kg
ims-pgn LD_{Lo}:7500 ug/kg
unk-mam LD₅₀:40 gm/kg
orl-bwd LD₅₀:13 mg/kg

CODEN:

IJMRAQ 59,1442,71
PSEBAA 32,678,35

FCTXAV 11,31,73

JIHTAB 30,10,48
AMNTA4 85,119,51
JAMAAP 101,1333,33
TXAPÁ9 21,315,72
JPPMAB 17,814,65
JPETAB 49,187,33
FMCHA2 11,107,80
FATOAO 28,493,65
BCPCA6 18,1389,69
JPETAB 49,187,33
JPETAB 49,187,33
JPETAB 49,187,33
FATOAO 28,493,65
JIHTAB 30,10,48
AEPPAE 192,331,39
JPETAB 49,187,33
30ZDA9 197,71
TXAPÁ9 21,315,72

Aquatic Toxicity Rating: TLm96:10-1 ppm WQCHM*
4,-74. *Toxicology Review*: 31ZNA 1(1),93,71. Reported in EPA TSCA Inventory, 1980. EPA TSCA 8(a) Preliminary Assessment Information Proposed Rule FERREAC 45,13646,80.

THR: MUT data. A skn irr. HIGH orl, ipr, scu, unk, ims. Phytotoxic. See also nitrates.

Disaster Hazard: When heated to decomp it emits tox fumes of NO_x.

For further information see Vol. 2, No. 2 of *DPIM Report*.

Appendix D
Site Inspection Form

POTENTIAL HAZARDOUS WASTE SITE
SITE INSPECTION REPORT
PART 1 - SITE LOCATION AND INSPECTION INFORMATION

I. IDENTIFICATION	
01 STATE NC	02 SITE NUMBER D980728687

II. SITE NAME AND LOCATION

01 SITE NAME (Legal, common, or descriptive name of site) Renroh	02 STREET, ROUTE NO., OR SPECIFIC LOCATION IDENTIFIER Highway 50 and Lloyd Street					
03 CITY Holly Ridge	04 STATE NC	05 ZIP CODE 28445	06 COUNTY Onslow	07 COUNTY CODE 67	08 CONG DIST 3	
09 COORDINATES 34° 29' 51" LATITUDE 77° 33' 22" LONGITUDE	10 TYPE OF OWNERSHIP (Check one) <input checked="" type="checkbox"/> A. PRIVATE <input type="checkbox"/> B. FEDERAL <input type="checkbox"/> C. STATE <input type="checkbox"/> D. COUNTY <input type="checkbox"/> E. MUNICIPAL <input type="checkbox"/> F. OTHER <input type="checkbox"/> G. UNKNOWN					

III. INSPECTION INFORMATION

01 DATE OF INSPECTION 8 / 8 / 89 MONTH, DAY, YEAR	02 SITE STATUS <input type="checkbox"/> ACTIVE <input checked="" type="checkbox"/> INACTIVE	03 YEARS OF OPERATION ~ 1973 1980 BEGINNING YEAR ENDING YEAR	UNKNOWN
---	---	--	---------

04 AGENCY PERFORMING INSPECTION (Check all that apply) <input type="checkbox"/> A. EPA <input type="checkbox"/> B. EPA CONTRACTOR <input checked="" type="checkbox"/> C. STATE <input type="checkbox"/> D. STATE CONTRACTOR <input type="checkbox"/> E. STATE <input type="checkbox"/> F. STATE CONTRACTOR	(Name of firm)	<input type="checkbox"/> C. MUNICIPAL <input type="checkbox"/> D. MUNICIPAL CONTRACTOR <input type="checkbox"/> G. OTHER	(Name of firm)
---	----------------	---	----------------

05 CHIEF INSPECTOR Jack Butler	06 TITLE Environmental Engineer	07 ORGANIZATION NC Superfund	08 TELEPHONE NO. (919) 733-2801
09 OTHER INSPECTORS Ed Wallingford	10 TITLE Environmental Chemist	11 ORGANIZATION NC Superfund	12 TELEPHONE NO. (919) 733-2801
			()
			()
			()
			()

13 SITE REPRESENTATIVES INTERVIEWED Les Haste	14 TITLE Health Dept.	15 ADDRESS 612 College Street Jacksonville, NC 28540	16 TELEPHONE NO (919) 347-2154
Sam Frazelle	Onslow Co. Health Dept.	612 College Street Jacksonville, NC 28540	(919) 347-2154
			()
			()
			()
			()

17 ACCESS GAINED BY (Check one) <input checked="" type="checkbox"/> PERMISSION <input type="checkbox"/> WARRANT	18 TIME OF INSPECTION A.M.	19 WEATHER CONDITIONS Clear, hot
--	-------------------------------	-------------------------------------

IV. INFORMATION AVAILABLE FROM

CONTACT Allen Hobbs	02 OF (Agency/Organization) Owner of Property			03 TELEPHONE NO. (919) 329-5511
04 PERSON RESPONSIBLE FOR SITE INSPECTION FORM Jack Butler	05 AGENCY NC DEHNR	06 ORGANIZATION Superfund Section	07 TELEPHONE NO. 919-733-2801	08 DATE 10 17 89 MONTH DAY YEAR

POTENTIAL HAZARDOUS WASTE SITE
SITE INSPECTION REPORT
PART 2 - WASTE INFORMATION

I. IDENTIFICATION

II. WASTE STATES, QUANTITIES, AND CHARACTERISTICS

01 PHYSICAL STATES (Check all that apply)		02 WASTE QUANTITY AT SITE (Measures of waste quantities must be independent)
<input checked="" type="checkbox"/> A. SOLID	<input type="checkbox"/> E. SLURRY	TONS _____
<input type="checkbox"/> B. POWDER, FINES	<input type="checkbox"/> F. LIQUID	CUBIC YARDS _____
<input type="checkbox"/> C. SLUDGE	<input type="checkbox"/> G. GAS	2,000
<input type="checkbox"/> D. OTHER _____		NO. OF DRUMS _____
(Specify)		

03 WASTE CHARACTERISTICS (Check all that apply)

<input checked="" type="checkbox"/> A. TOXIC	<input type="checkbox"/> E. SOLUBLE	<input checked="" type="checkbox"/> I. HIGHLY VOLATILE
<input type="checkbox"/> B. CORROSIVE	<input type="checkbox"/> F. INFECTIOUS	<input checked="" type="checkbox"/> J. EXPLOSIVE
<input type="checkbox"/> C. RADIOACTIVE	<input type="checkbox"/> G. FLAMMABLE	<input type="checkbox"/> K. REACTIVE
<input type="checkbox"/> D. PERSISTENT -	<input type="checkbox"/> H. IGNITABLE	<input type="checkbox"/> L. INCOMPATIBLE
		<input type="checkbox"/> M. NOT APPLICABLE

III. WASTE TYPE

CATEGORY	SUBSTANCE NAME	01 GROSS AMOUNT	02 UNIT OF MEASURE	03 COMMENTS
SLU	SLUDGE			
OLW	OILY WASTE			
SOL	SOLVENTS			
PSD	PESTICIDES			
OCC	OTHER ORGANIC CHEMICALS	2,000	Drums	2,4-Dinitrophenol
IOC	INORGANIC CHEMICALS			
ACD	ACIDS			
BAS	BASES			
MES	HEAVY METALS			

IV. HAZARDOUS SUBSTANCES (See Appendix for most frequently cited CAS Numbers)

V. FEEDSTOCKS (See Appendix for CAS Numbers)

CATEGORY	01 FEEDSTOCK NAME	02 CAS NUMBER	CATEGORY	01 FEEDSTOCK NAME	02 CAS NUMBER
FDS			FDS		
FDS			FDS		
FDS			FDS		
FDS			FDS		

VI. SOURCES OF INFORMATION (Cite specific references, e.g., state files, sample analysis, reports)

1. USGS, 7.5' Quad., Holly Ridge Quadrangle, 1970.
2. Permanent Files, NC Solid And Hazardous Waste Management Branch, Raleigh, North Carolina.

POTENTIAL HAZARDOUS WASTE SITE
SITE INSPECTION REPORT

PART 3 - DESCRIPTION OF HAZARDOUS CONDITIONS AND INCIDENTS

I. IDENTIFICATION

01 STATE NC 02 SITE NUMBER D980728687

II. HAZARDOUS CONDITIONS AND INCIDENTS

01 <input type="checkbox"/> A. GROUNDWATER CONTAMINATION 03 POPULATION POTENTIALLY AFFECTED: _____	02 <input type="checkbox"/> OBSERVED (DATE: _____) 04 NARRATIVE DESCRIPTION	<input type="checkbox"/> POTENTIAL	<input type="checkbox"/> ALLEGED
01 <input type="checkbox"/> B. SURFACE WATER CONTAMINATION 03 POPULATION POTENTIALLY AFFECTED: _____	02 <input type="checkbox"/> OBSERVED (DATE: _____) 04 NARRATIVE DESCRIPTION	<input type="checkbox"/> POTENTIAL	<input type="checkbox"/> ALLEGED
01 <input type="checkbox"/> C. CONTAMINATION OF AIR 03 POPULATION POTENTIALLY AFFECTED: _____	02 <input type="checkbox"/> OBSERVED (DATE: _____) 04 NARRATIVE DESCRIPTION	<input type="checkbox"/> POTENTIAL	<input type="checkbox"/> ALLEGED
01 <input type="checkbox"/> D. FIRE/EXPLOSIVE CONDITIONS 03 POPULATION POTENTIALLY AFFECTED: _____	02 <input type="checkbox"/> OBSERVED (DATE: _____) 04 NARRATIVE DESCRIPTION	<input type="checkbox"/> POTENTIAL	<input type="checkbox"/> ALLEGED
01 <input type="checkbox"/> E. DIRECT CONTACT 03 POPULATION POTENTIALLY AFFECTED: _____	02 <input type="checkbox"/> OBSERVED (DATE: _____) 04 NARRATIVE DESCRIPTION	<input type="checkbox"/> POTENTIAL	<input type="checkbox"/> ALLEGED
01 <input type="checkbox"/> F. CONTAMINATION OF SOIL 03 AREA POTENTIALLY AFFECTED: _____ (Acres)	02 <input type="checkbox"/> OBSERVED (DATE: _____) 04 NARRATIVE DESCRIPTION	<input type="checkbox"/> POTENTIAL	<input type="checkbox"/> ALLEGED
01 <input type="checkbox"/> G. DRINKING WATER CONTAMINATION 03 POPULATION POTENTIALLY AFFECTED: _____	02 <input type="checkbox"/> OBSERVED (DATE: _____) 04 NARRATIVE DESCRIPTION	<input type="checkbox"/> POTENTIAL	<input type="checkbox"/> ALLEGED
01 <input type="checkbox"/> H. WORKER EXPOSURE/INJURY 03 WORKERS POTENTIALLY AFFECTED: _____	02 <input type="checkbox"/> OBSERVED (DATE: _____) 04 NARRATIVE DESCRIPTION	<input type="checkbox"/> POTENTIAL	<input type="checkbox"/> ALLEGED
01 <input type="checkbox"/> I. POPULATION EXPOSURE/INJURY 03 POPULATION POTENTIALLY AFFECTED: _____	02 <input type="checkbox"/> OBSERVED (DATE: _____) 04 NARRATIVE DESCRIPTION	<input type="checkbox"/> POTENTIAL	<input type="checkbox"/> ALLEGED

POTENTIAL HAZARDOUS WASTE SITE
SITE INSPECTION REPORT

PART 3 - DESCRIPTION OF HAZARDOUS CONDITIONS AND INCIDENTS

I. IDENTIFICATION

01 STATE NC	02 SITE NUMBER D980728687
----------------	------------------------------

II. HAZARDOUS CONDITIONS AND INCIDENTS *(Continued)*

01 J. DAMAGE TO FLORA
04 NARRATIVE DESCRIPTION

02 OBSERVED (DATE: _____) POTENTIAL ALLEGED

01 K. DAMAGE TO FAUNA
04 NARRATIVE DESCRIPTION *(Include name(s) of species)*

02 OBSERVED (DATE: _____) POTENTIAL ALLEGED

01 L. CONTAMINATION OF FOOD CHAIN
04 NARRATIVE DESCRIPTION

02 OBSERVED (DATE: _____) POTENTIAL ALLEGED

01 M. UNSTABLE CONTAINMENT OF WASTES
(Spills/Runoff/Standing liquids, Leaking drums)
03 POPULATION POTENTIALLY AFFECTED: _____

02 OBSERVED (DATE: _____) POTENTIAL ALLEGED

04 NARRATIVE DESCRIPTION

01 N. DAMAGE TO OFFSITE PROPERTY
04 NARRATIVE DESCRIPTION

02 OBSERVED (DATE: _____) POTENTIAL ALLEGED

01 O. CONTAMINATION OF SEWERS, STORM DRAINS, WWTPs
04 NARRATIVE DESCRIPTION

02 OBSERVED (DATE: _____) POTENTIAL ALLEGED

01 P. ILLEGAL/UNAUTHORIZED DUMPING
04 NARRATIVE DESCRIPTION

02 OBSERVED (DATE: _____) POTENTIAL ALLEGED

05 DESCRIPTION OF ANY OTHER KNOWN, POTENTIAL, OR ALLEGED HAZARDS

III. TOTAL POPULATION POTENTIALLY AFFECTED: _____

IV. COMMENTS

No contamination found remaining on site.

SOURCES OF INFORMATION *(Cite specific references, e.g., state files, sample analysis, reports)*

As previously sited.

POTENTIAL HAZARDOUS WASTE SITE
SITE INSPECTION
PART 4 - PERMIT AND DESCRIPTIVE INFORMATION

I. IDENTIFICATION	
01 STATE	02 SITE NUMBER
NC	D980728687

II. PERMIT INFORMATION

01 TYPE OF PERMIT ISSUED (Check all that apply)	02 PERMIT NUMBER	03 DATE ISSUED	04 EXPIRATION DATE	05 COMMENTS
<input type="checkbox"/> A. NPDES				
<input type="checkbox"/> B. UIC				
<input type="checkbox"/> C. AIR				
<input type="checkbox"/> D. RCRA				
<input type="checkbox"/> E. RCRA INTERIM STATUS				
<input type="checkbox"/> F. SPCC PLAN				
<input type="checkbox"/> G. STATE <i>(Specify)</i>				
<input type="checkbox"/> H. LOCAL <i>(Specify)</i>				
<input type="checkbox"/> I. OTHER <i>(Specify)</i>				
<input type="checkbox"/> J. NONE				

III. SITE DESCRIPTION

01 STORAGE/DISPOSAL (Check all that apply)	02 AMOUNT	03 UNIT OF MEASURE	04 TREATMENT (Check all that apply)	05 OTHER
<input type="checkbox"/> A. SURFACE IMPOUNDMENT			<input type="checkbox"/> A. INCINERATION	<input type="checkbox"/> A. BUILDINGS ON SITE
<input type="checkbox"/> B. PILES			<input type="checkbox"/> B. UNDERGROUND INJECTION	
<input type="checkbox"/> C. DRUMS, ABOVE GROUND	2,000	Drums	<input type="checkbox"/> C. CHEMICAL/PHYSICAL	
<input type="checkbox"/> D. TANK, ABOVE GROUND			<input type="checkbox"/> D. BIOLOGICAL	
<input type="checkbox"/> E. TANK, BELOW GROUND			<input type="checkbox"/> E. WASTE OIL PROCESSING	
<input type="checkbox"/> F. LANDFILL			<input type="checkbox"/> F. SOLVENT RECOVERY	
<input type="checkbox"/> G. LANDFARM			<input type="checkbox"/> G. OTHER RECYCLING/RECOVERY	
<input type="checkbox"/> H. OPEN DUMP			<input checked="" type="checkbox"/> H. OTHER Removal <i>(Specify)</i>	
<input type="checkbox"/> I. OTHER <i>(Specify)</i>				

07 COMMENTS

Removal occurred on site in 1980. No contamination found remaining on site.

IV. CONTAINMENT

01 CONTAINMENT OF WASTES (Check one)	02 DESCRIPTION OF DRUMS, DIKING, LINERS, BARRIERS, ETC.	03 COMMENTS
<input checked="" type="checkbox"/> A. ADEQUATE, SECURE		

Approximately 2,000 drums of 2,4-Dinitrophenol have been removed from the site.

V. ACCESSIBILITY

01 WASTE EASILY ACCESSIBLE: YES NO

02 COMMENTS

Wastes no longer present.

VI. SOURCES OF INFORMATION (Cite specific references, e.g. state files, sample analysis, reports)

As previously sited.

POTENTIAL HAZARDOUS WASTE SITE
SITE INSPECTION REPORT
PART 5 - WATER, DEMOGRAPHIC, AND ENVIRONMENTAL DATA

I. IDENTIFICATION	
01 STATE NC	02 SITE NUMBER D980728687

II. DRINKING WATER SUPPLY

01 TYPE OF DRINKING SUPPLY (Check as applicable)		02 STATUS			03 DISTANCE TO SITE	
COMMUNITY	SURFACE	WELL	ENDANGERED	AFFECTED	MONITORED	A. <u>30</u> (mi) B. <u>0.25</u> (mi)
	A. <input type="checkbox"/>	B. <input checked="" type="checkbox"/>	A. <input type="checkbox"/>	B. <input type="checkbox"/>	C. <input type="checkbox"/>	
NON-COMMUNITY	C. <input type="checkbox"/>	D. <input checked="" type="checkbox"/>	D. <input type="checkbox"/>	E. <input type="checkbox"/>	F. <input type="checkbox"/>	

III. GROUNDWATER

01 GROUNDWATER USE IN VICINITY (Check one)					
<input checked="" type="checkbox"/> A. ONLY SOURCE FOR DRINKING		<input type="checkbox"/> B. DRINKING (Other sources available) COMMERCIAL, INDUSTRIAL, IRRIGATION (No other water sources available)		<input type="checkbox"/> C. COMMERCIAL, INDUSTRIAL, IRRIGATION (Limited other sources available)	
				<input type="checkbox"/> D. NOT USED, UNUSEABLE	

02 POPULATION SERVED BY GROUND WATER <u>657</u>		03 DISTANCE TO NEAREST DRINKING WATER WELL <u>0.25</u> (mi)			
04 DEPTH TO GROUNDWATER <u>15</u> (ft)	05 DIRECTION OF GROUNDWATER FLOW <u>Unknown</u>	06 DEPTH TO AQUIFER OF CONCERN <u>15</u> (ft)	07 POTENTIAL YIELD OF AQUIFER Unknown (gpd)	08 SOLE SOURCE AQUIFER	<input checked="" type="checkbox"/> YES <input type="checkbox"/> NO

09 DESCRIPTION OF WELLS (Including usage, depth, and location relative to population and buildings)

Three wells serve meat processing plant approximately 1300 feet from site to wash down equipment.

10 RECHARGE AREA <input type="checkbox"/> YES <input type="checkbox"/> NO	COMMENTS	11 DISCHARGE AREA <input type="checkbox"/> YES <input type="checkbox"/> NO	COMMENTS
---	----------	--	----------

IV. SURFACE WATER

01 SURFACE WATER USE (Check one)			
<input checked="" type="checkbox"/> A. RESERVOIR, RECREATION DRINKING WATER SOURCE		<input type="checkbox"/> B. IRRIGATION, ECONOMICALLY IMPORTANT RESOURCES	
		<input type="checkbox"/> C. COMMERCIAL, INDUSTRIAL	
		<input type="checkbox"/> D. NOT CURRENTLY USED	

02 AFFECTED/POTENTIALLY AFFECTED BODIES OF WATER			
NAME: Cypress Branch		AFFECTED <input type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/>	DISTANCE TO SITE <u>0.5</u> (mi) (mi) (mi)

01 TOTAL POPULATION WITHIN			02 DISTANCE TO NEAREST POPULATION
ONE (1) MILE OF SITE <u>514</u> A. <input type="checkbox"/> NO. OF PERSONS	TWO (2) MILES OF SITE <u>665</u> B. <input type="checkbox"/> NO. OF PERSONS	THREE (3) MILES OF SITE <u>1122</u> C. <input type="checkbox"/> NO. OF PERSONS	<u>0.1</u> (mi)

03 NUMBER OF BUILDINGS WITHIN TWO (2) MILES OF SITE <u>175</u>	04 DISTANCE TO NEAREST OFF-SITE BUILDING <u>0.1</u> (mi)
---	---

05 POPULATION WITHIN VICINITY OF SITE (Provide narrative description of nature of population within vicinity of site, e.g., rural, village, densely populated urban area)

All of the town of Holly Ridge (population 465; 1980 census) is within one mile of the site.

POTENTIAL HAZARDOUS WASTE SITE
SITE INSPECTION REPORT
PART 5 - WATER, DEMOGRAPHIC, AND ENVIRONMENTAL DATA

I. IDENTIFICATION	
01 STATE NC	02 SITE NUMBER D980728687

VI. ENVIRONMENTAL INFORMATION

01 PERMEABILITY OF UNSATURATED ZONE (Check one)

A. 10^{-6} - 10^{-8} cm/sec B. 10^{-4} - 10^{-6} cm/sec C. 10^{-4} - 10^{-3} cm/sec D. GREATER THAN 10^{-3} cm/sec

02 PERMEABILITY OF BEDROCK (Check one)

A. IMPERMEABLE
(Less than 10^{-6} cm/sec) B. RELATIVELY IMPERMEABLE
(10^{-4} - 10^{-6} cm/sec) C. RELATIVELY PERMEABLE
(10^{-2} - 10^{-4} cm/sec) D. VERY PERMEABLE
(Greater than 10^{-2} cm/sec)

03 DEPTH TO BEDROCK unknown _____ (ft)	04 DEPTH OF CONTAMINATED SOIL ZONE None _____ (ft)	05 SOIL pH _____	_____	_____
--	--	---------------------	-------	-------

06 NET PRECIPITATION 22-30 _____ (in)	07 ONE YEAR 24 HOUR RAINFALL 3.5-4.0 _____ (in)	08 SLOPE SITE SLOPE 0 % _____	DIRECTION OF SITE SLOPE None	TERRAIN AVERAGE SLOPE 0 % _____
---	---	---	---------------------------------	--

09 FLOOD POTENTIAL SITE IS IN _____ YEAR FLOODPLAIN	10 □ SITE IS ON BARRIER ISLAND, COASTAL HIGH HAZARD AREA, RIVERINE FLOODWAY
--	--

11 DISTANCE TO WETLANDS (5 acre minimum)	12 DISTANCE TO CRITICAL HABITAT (of endangered species)
ESTUARINE A. _____ (mi)	OTHER 1 Threatened XENDANGERED SPECIES: _____ 60 (mi) Waccamaw Silverside

13 LAND USE IN VICINITY.	DISTANCE TO: COMMERCIAL/INDUSTRIAL A. 0.1 _____ (mi)	RESIDENTIAL AREAS; NATIONAL/STATE PARKS, FORESTS, OR WILDLIFE RESERVES B. 0.1 _____ (mi)	AGRICULTURAL LANDS PRIME AG LAND C. _____ (mi)	AG LAND D. _____ (mi)
--------------------------	---	---	--	--------------------------

14 DESCRIPTION OF SITE IN RELATION TO SURROUNDING TOPOGRAPHY

Site is essentially flat.

VII. SOURCES OF INFORMATION (Cite specific references, e.g., state files, sample analysis, reports)

As previously sited.

POTENTIAL HAZARDOUS WASTE SITE
SITE INSPECTION REPORT
PART 6 - SAMPLE AND FIELD INFORMATION

I. IDENTIFICATION	
01 STATE	02 SITE NUMBER
NC	D-980728687

II. SAMPLES TAKEN

SAMPLE TYPE	01 NUMBER OF SAMPLES TAKEN	02 SAMPLES SENT TO	03 ESTIMATED DATE RESULTS AVAILABLE
GROUNDWATER			
SURFACE WATER			
WASTE			
AIR			
RUNOFF			
SPILL			
SOIL	4	NC DHR/DHS	
VEGETATION			
OTHER			

III. FIELD MEASUREMENTS TAKEN

01 TYPE	02 COMMENTS

IV. PHOTOGRAPHS AND MAPS

01 TYPE <input checked="" type="checkbox"/> GROUND <input type="checkbox"/> AERIAL	02 IN CUSTODY OF <u>North Carolina Superfund Section</u> <small>(Name of organization or individual)</small>
03 MAPS <input checked="" type="checkbox"/> YES <input type="checkbox"/> NO	04 LOCATION OF MAPS <u>North Carolina Superfund Section</u>

V. OTHER FIELD DATA COLLECTED (Provide narrative description)

VI. SOURCES OF INFORMATION (Cite specific references, e.g., state files, sample analysis, reports)

As previously sited.

POTENTIAL HAZARDOUS WASTE SITE
SITE INSPECTION REPORT
PART 7 - OWNER INFORMATION

I. IDENTIFICATION	
01 STATE NC	02 SITE NUMBER D980728687

II. CURRENT OWNER(S)			PARENT COMPANY (If applicable)		
01 NAME Allen Hobbs	02 D+B NUMBER	08 NAME	09 D+B NUMBER		
03 STREET ADDRESS (P.O. Box, RFD #, etc.) Rt. 2, Box 229	04 SIC CODE	10 STREET ADDRESS (P.O. Box, RFD #, etc.)	11 SIC CODE		
05 CITY Holly Ridge	06 STATE NC	07 ZIP CODE 28445	12 CITY	13 STATE	14 ZIP CODE
01 NAME	02 D+B NUMBER	08 NAME	09 D+B NUMBER		
03 STREET ADDRESS (P.O. Box, RFD #, etc.)	04 SIC CODE	10 STREET ADDRESS (P.O. Box, RFD #, etc.)	11 SIC CODE		
05 CITY	06 STATE	07 ZIP CODE	12 CITY	13 STATE	14 ZIP CODE
01 NAME	02 D+B NUMBER	08 NAME	09 D+B NUMBER		
03 STREET ADDRESS (P.O. Box, RFD #, etc.)	04 SIC CODE	10 STREET ADDRESS (P.O. Box, RFD #, etc.)	11 SIC CODE		
05 CITY	06 STATE	07 ZIP CODE	12 CITY	13 STATE	14 ZIP CODE
01 NAME	02 D+B NUMBER	08 NAME	09 D+B NUMBER		
03 STREET ADDRESS (P.O. Box, RFD #, etc.)	04 SIC CODE	10 STREET ADDRESS (P.O. Box, RFD #, etc.)	11 SIC CODE		
05 CITY	06 STATE	07 ZIP CODE	12 CITY	13 STATE	14 ZIP CODE
III. PREVIOUS OWNER(S) (List most recent first)			IV. REALTY OWNER(S) (If applicable; list most recent first)		
01 NAME	02 D+B NUMBER	01 NAME	02 D+B NUMBER		
03 STREET ADDRESS (P.O. Box, RFD #, etc.)	04 SIC CODE	03 STREET ADDRESS (P.O. Box, RFD #, etc.)	04 SIC CODE		
05 CITY	06 STATE	07 ZIP CODE	05 CITY	06 STATE	07 ZIP CODE
01 NAME	02 D+B NUMBER	01 NAME	02 D+B NUMBER		
03 STREET ADDRESS (P.O. Box, RFD #, etc.)	04 SIC CODE	03 STREET ADDRESS (P.O. Box, RFD #, etc.)	04 SIC CODE		
05 CITY	06 STATE	07 ZIP CODE	05 CITY	06 STATE	07 ZIP CODE
01 NAME	02 D+B NUMBER	01 NAME	02 D+B NUMBER		
03 STREET ADDRESS (P.O. Box, RFD #, etc.)	04 SIC CODE	03 STREET ADDRESS (P.O. Box, RFD #, etc.)	04 SIC CODE		
05 CITY	06 STATE	07 ZIP CODE	05 CITY	06 STATE	07 ZIP CODE
SOURCES OF INFORMATION (Cite specific references, e.g., State files, sample analysis, reports)					
As previously sited.					

POTENTIAL HAZARDOUS WASTE SITE
SITE INSPECTION REPORT
PART 8 - OPERATOR INFORMATION

I. IDENTIFICATION	
01 STATE NC	02 SITE NUMBER D980728687

II. CURRENT OPERATOR <small>(Provide if different from owner)</small>			OPERATOR'S PARENT COMPANY <small>(If applicable)</small>			
01 NAME None	02 D+B NUMBER	10 NAME		11 D+B NUMBER		
03 STREET ADDRESS <small>(P.O. Box, RFD #, etc.)</small>		04 SIC CODE	12 STREET ADDRESS <small>(P.O. Box, RFD #, etc.)</small>			13 SIC CODE
05 CITY	06 STATE	07 ZIP CODE	14 CITY	15 STATE	16 ZIP CODE	
08 YEARS OF OPERATION	09 NAME OF OWNER					
III. PREVIOUS OPERATOR(S) <small>(List most recent first; provide only if different from owner)</small>			PREVIOUS OPERATORS' PARENT COMPANIES <small>(If applicable)</small>			
01 NAME Doug Horner	02 D+B NUMBER	10 NAME		11 D+B NUMBER		
03 STREET ADDRESS <small>(P.O. Box, RFD #, etc.)</small>		04 SIC CODE	12 STREET ADDRESS <small>(P.O. Box, RFD #, etc.)</small>			13 SIC CODE
05 CITY	06 STATE	07 ZIP CODE	14 CITY	15 STATE	16 ZIP CODE	
08 YEARS OF OPERATION	09 NAME OF OWNER DURING THIS PERIOD					
01 NAME	02 D+B NUMBER	10 NAME		11 D+B NUMBER		
03 STREET ADDRESS <small>(P.O. Box, RFD #, etc.)</small>		04 SIC CODE	12 STREET ADDRESS <small>(P.O. Box, RFD #, etc.)</small>			13 SIC CODE
05 CITY	06 STATE	07 ZIP CODE	14 CITY	15 STATE	16 ZIP CODE	
08 YEARS OF OPERATION	09 NAME OF OWNER DURING THIS PERIOD					
IV. SOURCES OF INFORMATION <small>(Cite specific references, e.g., state IDs, sample analysis, reports)</small>						
As previously sited.						

POTENTIAL HAZARDOUS WASTE SITE
SITE INSPECTION REPORT
PART 9 - GENERATOR/TRANSPORTER INFORMATION

I. IDENTIFICATION	
01 STATE NC	02 SITE NUMBER D980728687

II. ON-SITE GENERATOR

01 NAME	02 D+B NUMBER	
03 STREET ADDRESS (P.O. Box, RFD #, etc.)	04 SIC CODE	
05 CITY	06 STATE	07 ZIP CODE

III. OFF-SITE GENERATOR(S)

01 NAME	02 D+B NUMBER	01 NAME	02 D+B NUMBER		
03 STREET ADDRESS (P.O. Box, RFD #, etc.)	04 SIC CODE	03 STREET ADDRESS (P.O. Box, RFD #, etc.)	04 SIC CODE		
05 CITY	06 STATE	07 ZIP CODE	05 CITY	06 STATE	07 ZIP CODE
01 NAME	02 D+B NUMBER	01 NAME	02 D+B NUMBER		
03 STREET ADDRESS (P.O. Box, RFD #, etc.)	04 SIC CODE	03 STREET ADDRESS (P.O. Box, RFD #, etc.)	04 SIC CODE		
05 CITY	06 STATE	07 ZIP CODE	05 CITY	06 STATE	07 ZIP CODE

IV. TRANSPORTER(S)

01 NAME	02 D+B NUMBER	01 NAME	02 D+B NUMBER		
03 STREET ADDRESS (P.O. Box, RFD #, etc.)	04 SIC CODE	03 STREET ADDRESS (P.O. Box, RFD #, etc.)	04 SIC CODE		
05 CITY	06 STATE	07 ZIP CODE	05 CITY	06 STATE	07 ZIP CODE
01 NAME	02 D+B NUMBER	01 NAME	02 D+B NUMBER		
03 STREET ADDRESS (P.O. Box, RFD #, etc.)	04 SIC CODE	03 STREET ADDRESS (P.O. Box, RFD #, etc.)	04 SIC CODE		
05 CITY	06 STATE	07 ZIP CODE	05 CITY	06 STATE	07 ZIP CODE

V. SOURCES OF INFORMATION (Check specific references, e.g., state files, sample analysis, reports)

As previously sited.

POTENTIAL HAZARDOUS WASTE SITE
SITE INSPECTION REPORT
PART 10 - PAST RESPONSE ACTIVITIES

I. IDENTIFICATION	
01 STATE	02 SITE NUMBER
NC	D980728687

II. PAST RESPONSE ACTIVITIES

01 <input type="checkbox"/> A. WATER SUPPLY CLOSED 04 DESCRIPTION	02 DATE _____	03 AGENCY _____
01 <input type="checkbox"/> B. TEMPORARY WATER SUPPLY PROVIDED 04 DESCRIPTION	02 DATE _____	03 AGENCY _____
01 <input type="checkbox"/> C. PERMANENT WATER SUPPLY PROVIDED 04 DESCRIPTION	02 DATE _____	03 AGENCY _____
01 <input checked="" type="checkbox"/> D. SPILLED MATERIAL REMOVED 04 DESCRIPTION Approximately 2,000 drums of 2,4-dinitrophenol removed in 1980 under a court order.	02 DATE 1980	03 AGENCY _____
01 <input type="checkbox"/> E. CONTAMINATED SOIL REMOVED 04 DESCRIPTION	02 DATE _____	03 AGENCY _____
01 <input type="checkbox"/> F. WASTE REPACKAGED 04 DESCRIPTION	02 DATE _____	03 AGENCY _____
01 <input type="checkbox"/> G. WASTE DISPOSED ELSEWHERE 04 DESCRIPTION	02 DATE _____	03 AGENCY _____
01 <input type="checkbox"/> H. ON SITE BURIAL 04 DESCRIPTION	02 DATE _____	03 AGENCY _____
01 <input type="checkbox"/> I. IN SITU CHEMICAL TREATMENT 04 DESCRIPTION	02 DATE _____	03 AGENCY _____
01 <input type="checkbox"/> J. IN SITU BIOLOGICAL TREATMENT 04 DESCRIPTION	02 DATE _____	03 AGENCY _____
01 <input type="checkbox"/> K. IN SITU PHYSICAL TREATMENT 04 DESCRIPTION	02 DATE _____	03 AGENCY _____
01 <input type="checkbox"/> L. ENCAPSULATION 04 DESCRIPTION	02 DATE _____	03 AGENCY _____
01 <input type="checkbox"/> M. EMERGENCY WASTE TREATMENT 04 DESCRIPTION	02 DATE _____	03 AGENCY _____
01 <input type="checkbox"/> N. CUTOFF WALLS 04 DESCRIPTION	02 DATE _____	03 AGENCY _____
01 <input type="checkbox"/> O. EMERGENCY DIKING/SURFACE WATER DIVERSION 04 DESCRIPTION	02 DATE _____	03 AGENCY _____
01 <input type="checkbox"/> P. CUTOFF TRENCHES/SUMP 04 DESCRIPTION	02 DATE _____	03 AGENCY _____
01 <input type="checkbox"/> Q. SUBSURFACE CUTOFF WALL 04 DESCRIPTION	02 DATE _____	03 AGENCY _____

POTENTIAL HAZARDOUS WASTE SITE
SITE INSPECTION REPORT
PART 10 - PAST RESPONSE ACTIVITIES

I. IDENTIFICATION	
01 STATE NC	02 SITE NUMBER D980728687

II PAST RESPONSE ACTIVITIES (Continued)

01 <input type="checkbox"/> R. BARRIER WALLS CONSTRUCTED 04 DESCRIPTION	02 DATE _____	03 AGENCY _____
01 <input type="checkbox"/> S. CAPPING/COVERING 04 DESCRIPTION	02 DATE _____	03 AGENCY _____
01 <input type="checkbox"/> T. BULK TANKAGE REPAIRED 04 DESCRIPTION	02 DATE _____	03 AGENCY _____
01 <input type="checkbox"/> U. GROUT CURTAIN CONSTRUCTED 04 DESCRIPTION	02 DATE _____	03 AGENCY _____
01 <input type="checkbox"/> V. BOTTOM SEALED 04 DESCRIPTION	02 DATE _____	03 AGENCY _____
01 <input type="checkbox"/> W. GAS CONTROL 04 DESCRIPTION	02 DATE _____	03 AGENCY _____
01 <input type="checkbox"/> X. FIRE CONTROL 04 DESCRIPTION	02 DATE _____	03 AGENCY _____
01 <input type="checkbox"/> Y. LEACHATE TREATMENT 04 DESCRIPTION	02 DATE _____	03 AGENCY _____
01 <input type="checkbox"/> Z. AREA EVACUATED 04 DESCRIPTION	02 DATE _____	03 AGENCY _____
01 <input type="checkbox"/> 1. ACCESS TO SITE RESTRICTED 04 DESCRIPTION	02 DATE _____	03 AGENCY _____
01 <input type="checkbox"/> 2. POPULATION RELOCATED 04 DESCRIPTION	02 DATE _____	03 AGENCY _____
01 <input type="checkbox"/> 3. OTHER REMEDIAL ACTIVITIES 04 DESCRIPTION	02 DATE _____	03 AGENCY _____

III. SOURCES OF INFORMATION (Cite specific references, e.g., site files, sample analysis, reports)

As previously sited.

POTENTIAL HAZARDOUS WASTE SITE
SITE INSPECTION REPORT
PART 11 - ENFORCEMENT INFORMATION

I. IDENTIFICATION

01 STATE NC	02 SITE NUMBER D980728687
----------------	------------------------------

II. ENFORCEMENT INFORMATION

01 PAST REGULATORY/ENFORCEMENT ACTION YES NO

02 DESCRIPTION OF FEDERAL, STATE, LOCAL REGULATORY/ENFORCEMENT ACTION

In 1980 approximately 2,000 drums of 2,4-dinitrophenol phenol were removed from the site by the owner under a court order.

III. SOURCES OF INFORMATION (Cite specific references, e.g., state files, sample analysis, reports)

As previously sited.

Appendix E

Site Safety Plan

ID # NCD 980 728 687

Facility Description: Size unknown Buildings none known

Disposal Methods Being Investigated Drums were removed from a building.

The building has been demolished, but possible contamination remains.

Unusual Features on Site (dike integrity, power lines, terrain, etc.):

None known

History of the Site: In 1977, approximately 2,000 drums of 2,4-dinitrophenol were discovered in a dilapidated U.S. Army gym. When discovered, the roof of the building had caved in and a number of the drums had broken open. In 1980, the drums were removed. The dilapidated building has been removed and the site is presently a vacant lot. The concrete slab floor of the building and fence that was erected around the building after the drum discovery remain on the site.

C. HAZARD EVALUATION

The site can be toured and sampled in level D. PE or PVC gloves will be worn while taking soil samples, and PE or PVC gloves will be worn while collecting water and sediment samples. Tyvek suits (saranex in wet conditions) are recommended to keep clothing clean.

D. WORK PLAN INSTRUCTION

Map or Sketch Attached? yes

Perimeter Identified? no

Command Post Identified? no

Zones of Contamination Identified? no

Personal Protective Equipment

Level of Protection C X D

Modifications Wear goggles and PVC gloves while preparing acid preserved samples. Avoid breathing acid vapors.

Surveillance Equipment:

_____	HNU	_____	Detector Tubes and Pumps
_____	OVA	_____	O2 Meter
_____	Explosimeter	_____	Radiation Monitor

Decontamination Procedures

 Level C Respirator wash, respirator removal, suit wash (if needed,) suit removal, boot wash, boot removal and glove removal.

 X Level D Boot wash and rinse and boot removal, suit removal, glove and goggle removal.

Modifications Dispose of trash properly, on-site if possible.

Work Schedule/Visit Objectives The objective is to determine if all the contamination has been removed from the site. Sampling will consist of surface soil sampling, and (if available) drinking water well sampling, surface water sampling, and sediment sampling.

EMERGENCY PRECAUTIONS

<u>Route of Exposure</u>	<u>First Aid</u>
Eyes	irrigate immediately
Skin	soap and water wash
Inhalation	fresh air and artificial respiration
Ingestion	get medical attention immediately

ID # NCD 980 728 687

Location of Nearest Phone: nearby residences-this is NOT an operating site
Hospital (Address and Phone Number)

Onslow Memorial Hospital, 317 Western Blvd., Jacksonville, NC 28540

(919) 577-2345 - can handle chemically contaminated patients

Emergency Transportation Systems (Phone Numbers)

Fire 911

Ambulance 911

Rescue Squad 911

Emergency Route to Hospital Take route 17 North and go through

Jacksonville. Approximately 3 miles on the other side of Jacksonville,
take a right onto Western Blvd. The hospital will be on the right.

PREVAILING WEATHER CONDITIONS AND FORECAST High near 80, chance of rain.

EQUIPMENT CHECKLIST

<u>Air purifying respirator</u>	<u>X</u> First Aid Kit
<u>Cartridges for respirator</u>	<u>X</u> 3 gal. Distilled H2O
<u>X</u> Rainsuit	<u>X</u> Gloves (<u>PE/PVC/nitrile/cloth</u>)
<u>O2 Indicator</u>	<u>X</u> Boots/Boot Covers
<u>Eye Wash Unit</u>	<u>X</u> Coveralls (<u>tyvek/saranex</u>)
<u>H Nu</u>	<u>X</u> Eye Protection
<u>pH Meter</u>	<u>X</u> Hard Hat
<u>Explosimeter</u>	<u>X</u> Decontamination
<u>Radioactive Monitor</u>	<u>X</u> Materials.
<u>Detector Tubes and Pump</u>	

Poison Control Center - State Coordinator

Duke University Medical Center

Telephone: 1-800-672-1697

Box 3024

Durham, NC 27710

ASHEVILLE Western NC Poison HENDERSONVILLE Margaret R. Pardee
704-255-4490 Control Center 704-693-6522 Memorial Hospital
Memorial Mission Hosp. Ext. 555,556 Fleming St., 28739
509 Biltmore Ave. 28801

CHARLOTTE Mercy Hospital HICKORY Catawba Mem. Hosp.
704-379-5827 2001 Vail Ave, 28207 704-322-6649 Fairgrove Chur. Rd 28601

DURHAM Duke Univ. Med. Center JACKSONVILLE Onslow Mem. Hospital
1-800-672-1697 Box 3007, 27710 919-577-2555 Western Blvd. 28540

GREENSBORO Moses Cone Hospital WILMINGTON New Hanover Mem. Hospital
919-379-4105 1200 N. Elm St. 27420 919-343-7046 2131 S. 17th St. 28401

1-800-722-2222

safeform.001

TO BE COMPLETED BY PROJECT MANAGER

PROJECT MANAGER: Jack Butler PROJECT: Renroh

Materials Used

<input type="checkbox"/> Air Purifying respirator cartridges	<input type="checkbox"/> Gloves (nitrile)
<input type="checkbox"/> Detector tubes	<input type="checkbox"/> Gloves (cloth)
<input type="checkbox"/> Eye Wash Units	<input type="checkbox"/> Boot covers
<input type="checkbox"/> First Aid Kit	<input type="checkbox"/> Coveralls (tyvek)
<input type="checkbox"/> Gloves (polyethylene)	<input type="checkbox"/> Coveralls (saranex)
<input type="checkbox"/> Gloves(PVC)	<input type="checkbox"/> Auger Brushes

Respirator Worn By _____ Approximate Time in Respirator _____

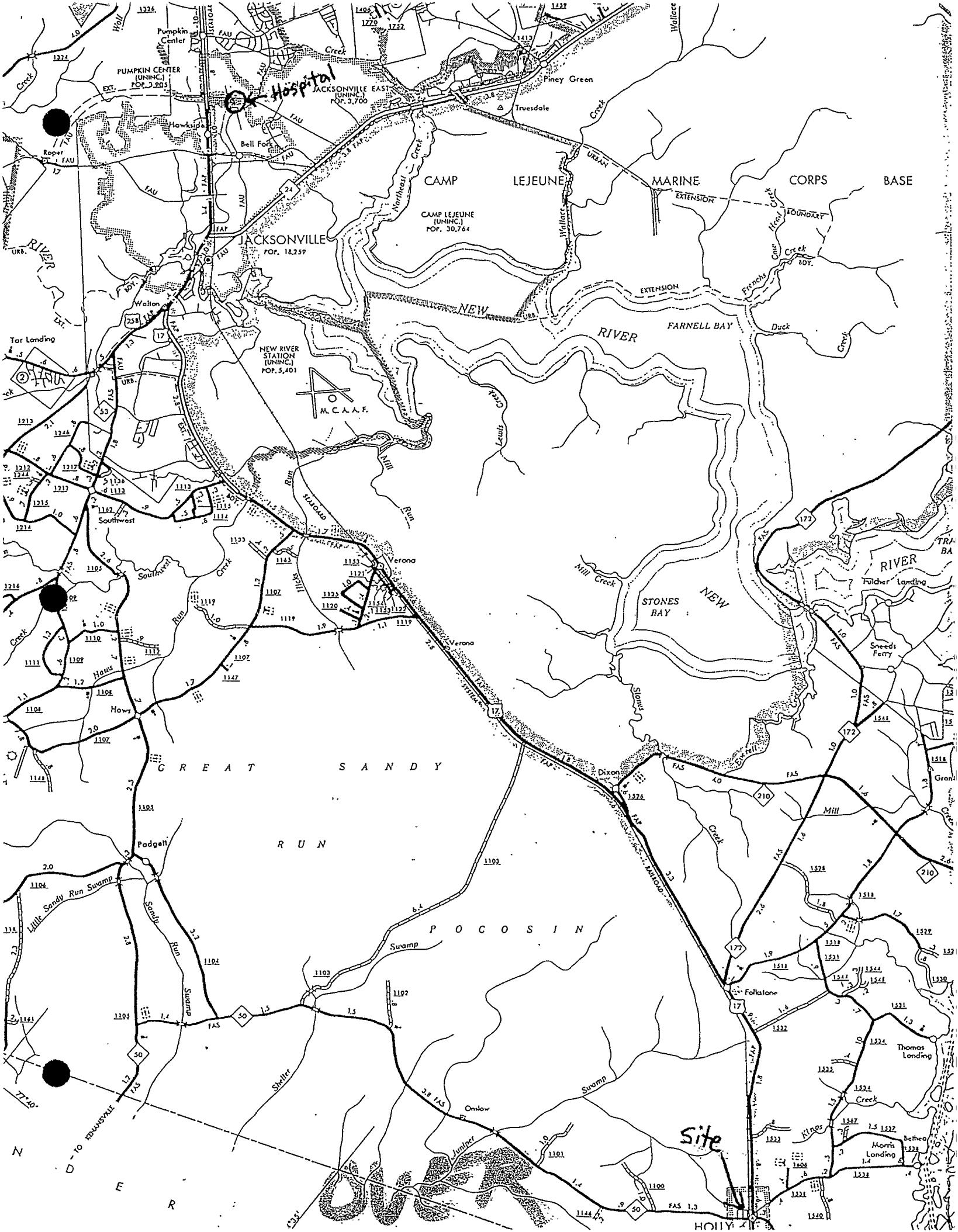
Air Monitoring Data (Include Calibration Reading)

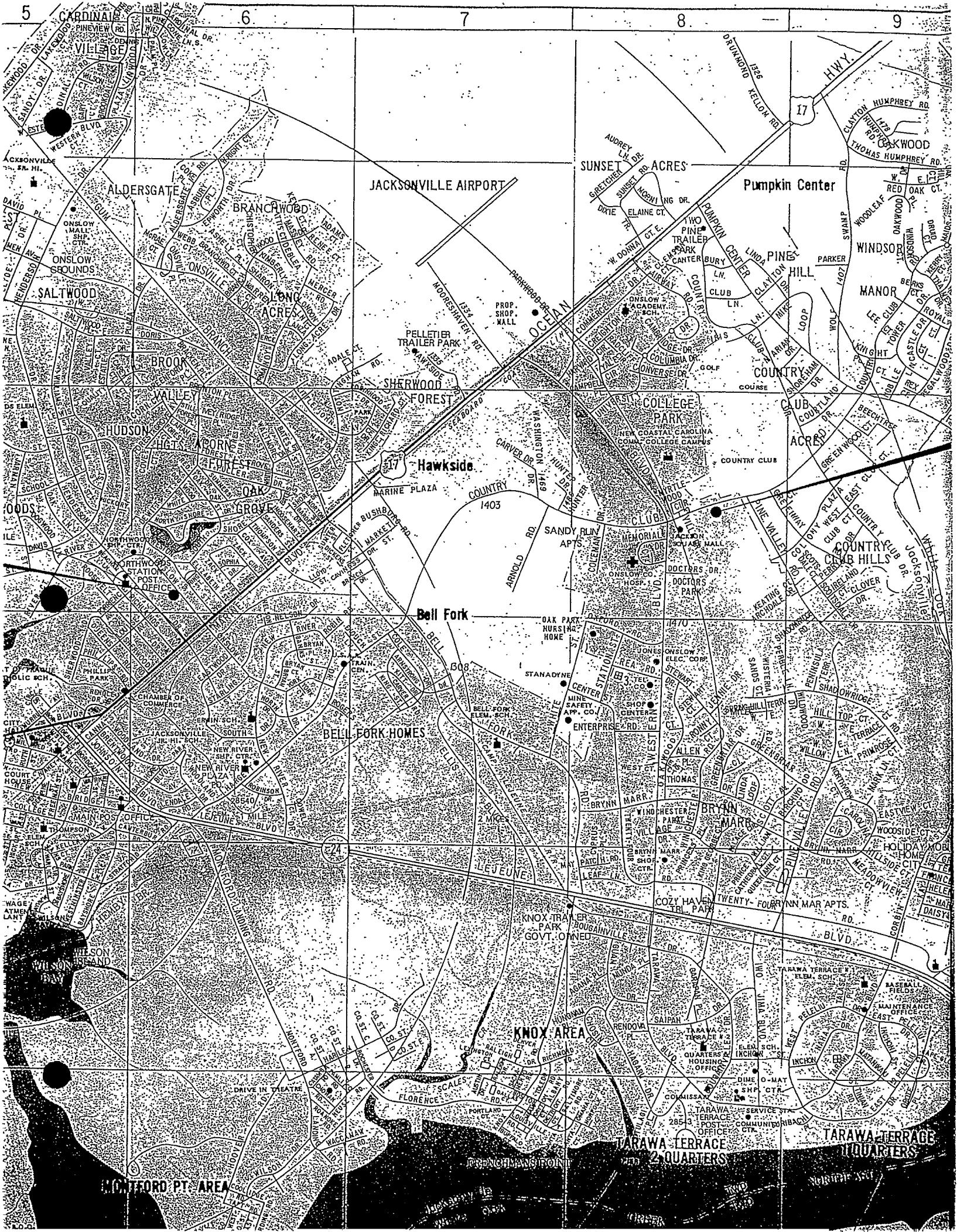
HNU: _____

OVA: _____

Explosimeter: _____

Radiation Meter: _____


If the maximum personal protective equipment as outlined in the Hazard Evaluation Section was not used, please justify:



Visitors Present

Orginazation Represented

HAZARDOUS SUBSTANCE INFORMATION FORM

Chemical Name: 2,4 dinitrophenol

I. PHYSICAL/CHEMICAL PROPERTIES

	Reference
Chemical Formula <u>C₆H₄N₂O₅</u>	<u>1</u>
Natural Physical State at 25°C <u>solid</u>	<u>1</u>
Vapor Pressure <u>no data</u> mm Hg at 20°C	<u>2</u>
Melting Point <u>112-114</u> °F/°C Boiling Point <u>not pert.</u> °F/°C	<u>2</u>
Flash Point (open or closed cup) <u>no data</u> °C/°F	<u>2</u>
Solubility - H ₂ O <u>insosuble</u>	<u>2</u>
Other <u>etyle acetate, acetone, chloroform,</u>	
<u>pyridine, carbon tetrachloride, toluene</u>	

Physical Features: (odor, color, etc.) a solid, yellow crystal with a sweet, musty odor (2)

II. TOXICOLOGICAL DATA

Standards: 0.2mg/m³ (2) TLV PEL 5 mg/m³ IDLH

Routes of Exposure: Inhalation, Ingestion, Skin contact, Eye contact

Acute/Chronic Symptoms: Liver damage, metabolic stimulant, dermatitis, dilation of puples

First Aid: Inhalation: fresh air, artifical respiration; Ingestion: get medical attention immediately; Skin contact: soap and water wash; Eye contact: flush with water immediately

Chemical Name: 2,4-dinitrophenol

III. HAZARDOUS CHARACTERISTICS

Reference

A. Combustibility Yes No X 2

Toxic by-products vapors are 2
toxic

B. Flammability LEL UEL

C. Reactivity Hazard reacts with oxidizing materials 2
and combustibles

D. Corrosivity Hazard yes/no pH:

Neutralizing agent:

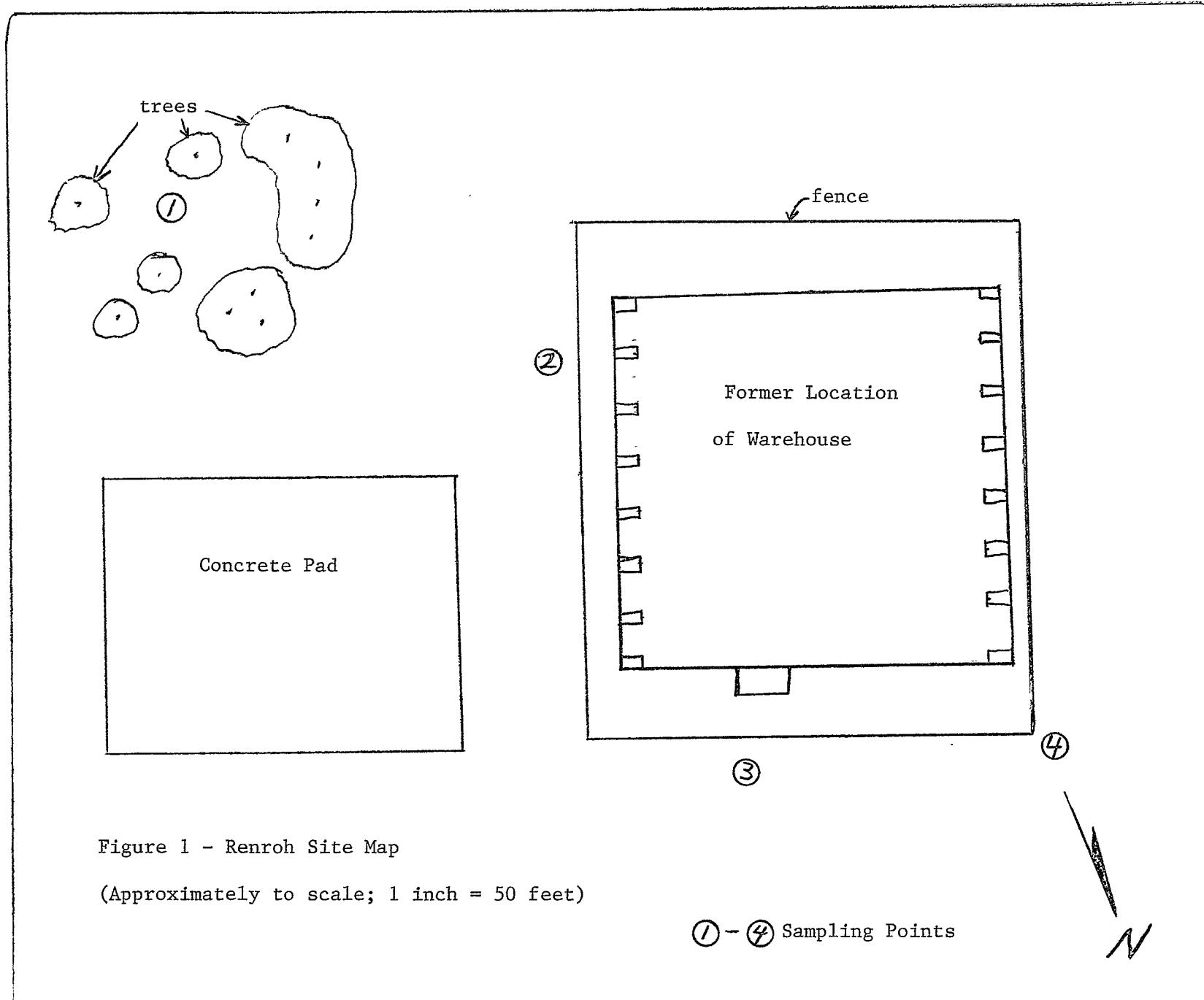
E. Radioactive Hazard Exposure Rate

Background yes/no

Alpha particles yes/no

Beta particles yes/no

Gamma radiation yes/no


IV. REFERENCES

1. The Merck Index, 10th Edition, 1983

2. Chemical Hazards Response Information System, 1985

US 50

Lloyd Street

